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ABSTRACT

Some electronic properties of GaAs-AlAs heterojunctions
and of metal-semiconductor junctions are presented in this
Report. a

GaAs-AlAs heterojunctions have been analyzed by means
of a selfconsistent localized scheme, based on a Wannier
function approach. Finite superlattices for (100) and (111)
directions have been considered, and their structural
properties have also been discussed. Our results show small
ionic relaxations at the (100)-interfaces, and no appreciable
relaxation at the (1ll)-heterojunction. The electronic
selfconsistent calculation gives a small transfer of charge
from AlAs to GaAs, so that a potential barrier between both
semiconductors appears. By calculating this barrier, we have
obtained the energy difference between the top of both
semiconductor valence bands, and found good agreement with
the experimental -evidence.

Abrupt metal-semiconductor junctions have been analyzed
by a selfconsistent tight-binding calculation. Realistic
results for the junction have been obtained in a (111)-Si-Ag
interface. General junctions for Si have been discussed
within the same context, and we have shown that: (i) the
barrier height increases with the strength of the metal-
semiconductor coupling; (ii) the barrier height is
essentially determined by the coupling between the
semiconductor and the fast metal layer.

Etched metal~semiconductor junctions have been analyzed
in a similar way. We present a realistic calculation of a
Si-H~Ag junction. More general cases for Si have been
explored by changing the parameters of the interface. Our
results show: (i) The barrier height presents small changes
(of up to 0.2 eV) depending on the ad-atom electronegativities.
For ad-atoms of low (high) electronegativity, we find higher
(smaller) barrier heights. (ii) The barrier height has been




found to be practically determined by the coupling between
the semiconductor and the ad-atom interlayer.

Finally, non-abrupt III-V semiconductor-metal
junctions have been analyzed and shown to interdiffuse as
a function of the metal-semiconductor heat of reaction and
0f the heat of reaction fon the semiconductonr.

ii




CHAPTER I. HETEROJUNCTIONS

I.1. INTRODUCTION

Semiconductor-semiconductor junctions have become an
important subject with many potential applications. Cur work
on this topic has been concentrated in the analysis of
GaAs-AlAs superlattices (SL).

In the last few years much progress has been made in
the technology of artificial crystals constituted by periodic
layers of two semiconductors. These superlattices show, under
certain conditions, very interesting properties such as
extremely high carrier mobility {(Hess and Holonyak Jr. 1981)
or negative differential resistance (Esaki and Chang 1974).

A SL which has received a great deal of attention is GaAs-
Aleal—x as grown by molecular-beam-epitaxy. Several
experimental techniques (Dingle et al.1974, 1975, Manuel et
al.1976, Sai-Halasz et al.1978, van der Ziel and Gossard 1978,
Barker et al.1978, Merlin et al.1980, Colvard et al.1980,
Holonyak Jr. et al.1980, 1981, Weisbuch et al.1981a, 1981b,
Gormik et al.1981, Piczuk et al.198la, 1981b) have been used
to study the vibrational and electronic properties of this
system. The Kroning~Penney model has been extensively used to
interpret the phenomenology. Such a model may be adequate
when the layer thickness is so large that regions with bulk
properties of each semiconductor exist. However, the
theoretical analysis is more difficult in those systems

where ultra-thin layers form the SL. Fortunately, in such
cases the experiments have been performed in samples where

x = 1 (van der Ziel and Gossard 1978, Barker Jr.et al.1978,
Merlin et al1.1980, Colvard et al.1980). This makes'possible -
a calculation of the properties of these (GaAs)m—(AlAs)n SL's

where m and n are the number of layers of each semiconductor
in a period of the crystal. Some efforts (Caruthers and
Lin ‘Chung 1978, Osbourn and Smith 1979, Schulman and McGill,
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1979, 1981, Andreoni and Car 1980, Schulman and Chang 1981)
have been made to study such systems by means of model
hamiltonians. However, to our knowledge, just only one self-
consistent calculation (Pickett et al.1978) has been carried
out for (110) oriented GaAs-AlAs SL's. This implies hetero-
polar interfaces with properties essentially different to the
homopolar ones of the experimental samples which have been
grown in the (001) direction. In this project, we have
analysed several SL's with polar interfaces, both (001) and
(111) by means of a self-consistent calculation of their
electronic and structural properties. Besides the electronic
self-consistency, similar to the one obtained in the
ccmputations published for other interfaces as (GaAs-AlAs)
(110) (Pickett et al.1978), (ImAs-GaSb) (100) (Ihm et al.1979)
and (Ge-GaAs) (Kunc and Martin 1981), we extend the self-
consistency to the ions which are free to move in order to
reach their equilibrium positions. The method is a minimization
of the total energy in terms of a localized basis which makes
easier its comparison with calculations where a tight-binding
model hamiltonian is used. Since the experiments are usually
performed in (001) SL's , we will devote more attention to
this case. In particular, we will analyze several systems with
different layer thickness in order to see when the SL can be
considered as a junction of the two semiconductors or as a

completely new crystal.

I.2. SELF-CONSISTENCY. LOCAL DENSITY FORMALISM

I.2.1. The method

We use a methad which has given satisfactory results for
other problems (Tejedor and Vergés 1979, Vergés and Tejedor i
1979a, 1979b, S&nchez-Dehesa et al.1981a, 1981b, 1981c). In
order to describe the electronic structure of the crystal, we
use a Wannier functions (WIF) representation (Kohn 1973). This
localized basis presents an important advantage in our case
of fully occupied bands. By means of a unitary transformation
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between the eigenstates w:(;) and the WF am(f—ﬁ) (where the

index m sums over the valence bands), both the charge density,
p(?), and the kinetic energy, T, can be written in terms of
the WF as follows (Vergés and Tejedor 1979%a, 1979b):

VB BZ #=x 2 . VB . N
b =2 [ vh s = 2] %a;(r—ﬁ)am(r—ﬁ) (I.1)
m ok m
VB BZ 2 . ‘
v-2) ] G |-E] @ -
m (1.2)
VB 2 N
=2 ] ]<apER -] a @0
m R

where the sum in K runs over the first Brillouin zone, whereas
the sum in R runs over all the lattice positions. Accordingly,
within a local approximation, the total energy of the system
can be expressed as a function of the valence WF and an ionic
pseudopotential, Vi(;)' Thus, the energy can be written as

E,,=E_+ E ' (1.3)

where Ee takes account of the purely electrostatic interaction
of a set of ionic pseudopotentials, all embedded in a
compensating uniform negative background (the zero Fourier
component of p), while all the other contributions are

included in the band-structure term E The electrostatic

, bs"
term is split as usual (Vergés and Tejedor 1979b) into two

parts: (i) the Ewald energy E containing the interaction of

EW’
a set of point ions with the electronic background, and (ii)
the correction coming from the spatial dependence of the ionic
pseudopotential vi(;): )
Za

° ¢ 81 o, -»> > Z
E, = Eg, + %;{E[dr[vil(rh =) + :{]dr[v:l(r)+ ‘ES]} p(T.4)

where the sums in 1 run over the types of anions and cations
in the supercell. In eq.(I.4) p is the mean electronic charge
" and za and zc are the ionic charges, i.e. 3 and 5 in our case.




The Ewald energy is computed by standard methods (Harrison
1966, Sanchez-Dehesa 1982) and is given by

: N, gt 20
-> -> * ->
+ 47 E [Nazasz(g)+NchSc(g)] [Nazasa(g)ﬂqczcsc(g)] *
N® ko o2
2 1 2
* exp(-g~ /40a) |1~ Vi exp(-g“/4a) ' (1.5)

where Na and Nc are the numbers ¢f anions and cations in the
supercell with volume 2, and Ni = Na+Nc‘ The structure factor
is defined-as usual:

2]

sj(tg’) = =17 e'xp(-ic}-(»’j) , (I.6)

J vy

J

where 3j are the positions of the anions and cations (j=1,2},
respectively, within the supercell. In eq.(I.5) several terms
coming from sums in real space do not appear because we take
the parameter o high enough to guarantee their cancellation.
The actual value in our computation is o = 1.2 a.u., which
gives a fast convergence in the sums involved in eq.(I.5).

The band structure energy per ion has the expression

ézpa

v s V2 ->
Eps = l£ % 2<hm(r-§)l-7—lam(r-§)) +

+ [aEp (Bre, [o(B)] + [dEV (D) [0 (E)-p] +

v, (¥) _
+ fat B [p(a-p]} , 1.7

where NT is the total number of ions in the crystal. The four
contributions to Ebs are the kinetic, T, the exchange and

correlation, Exc’ the ion-electron, E and the Hartree, E

I’ H'
energies respectively. The last two terms do not contain the
zero Fourier component of p, which is included in Ee. In order
to elude the cumbersome spatial integrals in eq.(I.7), the

evaluation of Ebs will be obtained in reciprocal space as will




be detailed below (Vergés and Tejedor 1979b).

Once the total energy is written in terms of the WF's,
a self-consistent solution is obtained by a minimization of
that total energy as a function of a set of variational
parameters included in a set of trial WF's. The whole scheme
to get trial WF's from localized functions was provosed by
Kohn (1973) and it is simple enough to allow the calculation
of different crystal properties (Tejedor and Vergés 1979,
Vergés and Tejedor 197%a,b, S&nchez-Dehesa et al,1981la,b,c).
In particular, it has been used to analyze stacking faults in
silicon (S&nchez-Dehesa et al.1981b) by a model where a
ficticious SL is used. Satisfactory results were obtained, so
that we will follow here the same procedure and only & few
technical points need more attention. The whole procedure is
sketched in the following diagram:

Choice of a set of
variational parameters 8

Self-consistent
WF  a_(Z,8)

Calculation of T P Variation of the
and p from the WF's & parameters B
A
|
Calculation of
> = .
Epg = BptEyg+tTHE o
Structural B NS\\\\\\\;
Calculation of
parameters > o ———2 75 E,, a minimum?
and ionic Ep = Ebs+Ee T ——
YES . .
pseudopotential



The pfocedure begins with a set of sp3 Slater type
orbitals (STO) centred at the positions where ionic pseudo-
-potentials are placed to describe the effect of the nuclei
and core electrons. In order to have a good starting point
for the SL calculation, we have previously computed the WF
and lattice constant for GaAs and AlAs perfect semiconductors
in zincblende structure. We apply our method with the ionic
pseudopotentials to be used later on for the (110) GaAs-AlAs
superlattice (Pickett et al.1978), taking into account that
the pseusopotential must be normalized to the volume of the
unit cell, so that it must be adequately varied when the
introduction of ionic relaxations changes that volume. The
parameters of the STO involved in the valence WF's z2nd the
lattice constants are the results we are interested in,
because this information is required as a starting point in
the SL calculation. Moreover, the value of the lattice
constant is a test of the correctness of our approach.

Table I.1 gives the different contributions to the total
energy of the GaAs zincblende crystals as a function of the
lattice constant. By using these results we have obtained
5.556 A and 5.544 & for the lattice parameters of AlAs and
GaAs respectively, when the necessary sums (Tejedor and Ver-
gés 1979, Vergés and Tejedor 1979b) running over the
reciprocal lattice vectors contain only the terms corresponding
to |g| < 87/a. The agreement with the experimental values
(Weast 1980), 5.660 X and 5.653 A respectively, improves when
‘more a-vectors are included, but in the SL case that means a
numerical task beyond our possibilities, so that we take

that maximum value of |§[ in our calculations. As a different
test of our results we present in Table I.2 the Fourier
componenteg, V(§), of the total self-consistent potential (Te--
jedor and Vergés 1979) with origin midway between ions:

> A
v = = fr {VSCOS("q'fr') - iVAsin(a':)} ,

+ _ a _ : _ -
where 1t = §(1,1,1), VS = 2(vc+va) and Va = 2(Vc Va). The

agreement with other theoretical estimations supports the
adequacy of our calculation (Caruthers and Lin Chung 1978,
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Walter and Cohen 1969, Stukel and Euwema 1969). The other
result we need is the valence WF. They are built up from trial
functions for each bond given by

f;i(E) = sinkovi(;) + cosx¢3i(§- 230 (1.8)
where ¢3.(;) is a sp3 Slater-type orbital (STO) centered at
one ion &nd pointing along the bond direction labelled by 3i'
Besides the variational parameter A, which gives the relative
weight of each one of the two sp3 orbitals, other parameters
varying in the minimization are the exponents of the STO.

Table I.3 shows our results for all those variational

TABLE I.3.- Variational parameters obtained by minimizing the
total energy of GaAs and AlAs described in a
zincblende (ZNB) and SL framework respectively.

The STO of Ga and As have the functional form
corresponding to states of the fourth atomic shell,
and the orbitals of Al the form corresponding to
the third atomic shell.

GaAs Alas
ZNB SL ZNB SL

A 1.0397 1.0462 1.0139 1.0153
Bhs 2.4754 2.4779 2.4705 2.4744
B4p 1.6885 1.6910 1.7051 1.7048
C
Bas, 3s 2.2764 2.2701 1.5588 1.4890
C
Bep, 3p 1.4912 1.4937 1.0384 1.0351

parameters for AlAs and GaAs with zincblende structure and
the calculated lattice constant given above.
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Since these results will be used later on in our
computations of SL, it .is convenient to check them for perfect
crystals described in the SL framework. To this end, we have
considered a (001) type SL, and introduced the same condition
|g] < 8n/a given above, which amounts to using 129
reciprocal vectors. In Table I.3 the variational parameters
obtained for this case are compared with the ones obtained in
the zincblende structure. The agreement can be’considered
satisfactory. As far as the contributions to the total energy
are concerned, we get results which differ less than 10_4 a.u.
from the ones given in Table I.l1 for the calculation in
zincblende structure. All these results seem to support that
we can use confidently the parameters obtained in a zincblende
structure for different types of SL's.

Once the perfect crystal has been analyzed, the results
so obtained are used to start the SL calculation. The ions
are placed at their ideal positions in a perfect SL with a
lattice constant which is the average of the two constants
obtained above for each zincblende crystal. With this choice
no missmatch of the two lattices is allowed, which is a good
approach because 0f the very similar parameters of these
semiconductors. For this lattice constant, the total energy is
self-consistently computed. The calculation is repeated for
several lattice constants around that initial value, so that
a more precise minimization is achieved. In a final step the
process is completed by allowing ionic relaxation at the
interfaces, a feature never previously calculated for these
SL's. Each one of the necessary steps is fulfilled in the
following way. The valence WF's of the superlattice are
variationaly computed with the same procedure from a set of

linear combinations of sp3

STO. Now the symmetry along the
superlattice direction has been broken so that both the
exponents of the orbitals and the mixture coefficients can be
different for each bond. This implies many variational
parameters and consequently a rather cumbersome numerical
task. Therefore we adopt the approach which gave us excellent
results in the case of the stacking fault of silicon (S&nchez-

Dehesa et al.1981b). Just the parameters of the atoms at the




11

interfaces are treated variationaly, fixing those correspon-
ding to the inner layers to their bulk values previously
calculated at the zincblende structure. In order to test the
results of this enormously simplified approach we have made
some particular calculations by also miunimizing with respect
to the parameters of inner layers. The total energy decreases
so little with this degree of freedom in which no significant
variation appears, that this simplified approach can be
considered as rather effective. In this scheme, the computation
starts by taking, for the interface bonds, the bulk
parameters as the initial values for the minimization
procedure.

As far as other technical points are concerned, they
are treated as detailed in S&nchez-Dehesa et al. (1981b), in
particular the special points scheme used to perform integrals
in reciprocal space.

In spite of the fact that the following sections are
devoted to the analysis of different SL's, we can advance here
the general trend of the results. The main variation obtained
with the minimization corresponds to the mixture parameter 2
at the interface as well as to the coefficients, obtained in
the orthogonalization procedure, of each WF given in terms
of the bond orbitals (I.8). However, the exponents of the
STO do not vary significantly. Such a result could be expected
because something similar happens in a much more drastic
situation as that of the change from free atoms to ions
forming a crystal (Tejedor and Vergés 1979, Vergés and
Tejedor 1979%a).

I.2.2, Results

I.2.2.1. (001) Superlatiices

In this section we discuss the results obtained when
the method avobe described is applied to SL oriented along
the (001) direction, which are those of experimental interest.
We concentrate upon (GaAs)m-(AlAs)m systems with m = 1,2, 3,
in order to analyze the effect of layer thickness on the

.
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properties of the SL. Experimental information (Barker Jr.
et al.1978) for such very thin SL's indicates that these
crystals must be considered as three-dimensiocnal (3D) with
properties rather different to those of thicker SL's, where
two-dimensional (2D) confination appears. Our results allow
to analyze how the transition in the 3D-2D behaviour occurs
and, in particular, the way in which transfer of charge and
ionic relaxations takes place at the interface of thicker SL
and heterojunctions.

Figures I.1, I.2 and I.3 show the supercell used in the
calculation for the cases m = 1, 2 and 3, respectively.
Straight lines joining the ions represent the bonds (eq.(I.8))
from which a set of trial WF's is built up as described
above. As in many other systems {Tejedor and Vergés 1979,
Vergés and Tejedor 1979a,b, S&nchez-Dehesa et al.l198la,b,c),
our results show that each valence WF can be asscciated with
one of those bonds because its weight in the neighbouring
bonds decreases very quickly. Therefore, we refer hereafter
sometimes to a particular valence WF as a particular bond. 3as
mentioned above, we start by self-consistently solving the
problem of a perfect (without ionic relaxations at the
interface) SL in order to determine the size of the supercell.
This can be represented by the bond length 1m in each case
(Gahs) -(AlAs) . We get 1, = 2.404 &, 1, =2.370 & and

= 2.401 & and

GaAs
= 2.406 & obtained in zincblende structure. This can

13 = 2.380 ﬁ, which are very close to 1
1AlAs
.be taken as a satisfactory test of the consistency of our SL
calculations. Once the bond length has been determined for
the inner ions, the distance between ionic layers at the
interface is allowed to vary looking for equilibrium
positions. Such step is made only for m = 3 because it does
not mean a new variational freedom in the other two cases
~where all the ions can be considered as being at an interface.
For m = 3 we get that both the distances Al-As and Ga-As at
the interface increase in a 2.5 % of their bulk value. This
implies that the period of (GaAs)3(AlAs)3 SL's is 1.008 times
that of the ideal one. Let us now discuss the values of the
variational parameters at this minimum of the total energy.
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FIGURE I.1.- Supercell used in the calculation of a
(GaAs)l-(AlAs)1 SL oriented along the (001)
direction. Heavy lines represent the bonds
from which WF's are built up. Parameter a
is the lattice constant of the corresponding
zincblende crystal.




FIGURE I.2.-

3

pAl
oAs
20Ga

Supercell used in the calculation of a
(GaAs) ,~(AlAs), SL oriented along the (001)
direction. Heavy lines represent the bonds
from which WFP's are built up. Parameter a

is the lattice constant of the corresponding
zincblende crystal.
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FIGURE I.3r Supercell used in the calculation of a
(GaAs)3-AlAs)3 SL oriented along the (001)
direction. Heavy lines represent the bonds from
which WF's are built up. Parameter a is the
lattice constant of the corresponding crystal.




No significant variations exist for the exponents of the STO
with respect to the bulk values. The main changes at the
interface are those of the mixture parameters A appearing in
eq. (I.8). Table I.4 gives our results for such parameter for
the three SL's under study. The comparison between bulk and
interface values shows that the combination between Ga and

1e

As orbitals does not change significantly. The main variation

is that of the mixture of Al and As orbitals. éﬁe connection

TABLE I.4.~ Values of the mixture parameter A for bonds in
the bulk and at the interface for (001)-type

superlattices. AA is for the combination in Al-As

bonds, and XG for Ga~As bonds (eq.(I.8)).

Bulk Interface
A, = 1.005

m=1 — A
AG = 1,043
A, = 1,014 A, = 0.991

m= 2 A A
AG = 1.042 AG = 1,040
A, = 1,014 A, = 0.974

m= 3 A A
AG = 1,042 AG = 1.046

of these results with physical properties is far from
straightforward because the main change produced in going

from perfect crystals to SL is not in the orbitals shape but

in the way in which these orbitals combine to give the WF's
of the system. In other words, the effect of the SL is
essentially contained in the orthogonalization procedure.
Therefore it is better to directly analyze physical results




as the chargé density or the potential éelf-consistently
calculated for the SL., Figure I.4 shows the potential
average parallel to the interface plane for (GaAs)3-(AlAs)3.
The mean value of V(z) is 6 meV higher in the GaAs region
than in the AlAs one. The three different contributions to
this step are: the ionic potential Vi, the Hartree potential

v and the exchange potential Vx

H’ c -
A\'zi = \'ri(c;aAs) - i‘ri(AlAs) = -0.0232 eV

ATIH = \'/H(GaAs) - \‘JH (Alas) = 0.02.84 ev

M-;xc = x?xc(GaAs) - V o(Alas) = 0.0009 eV .

From these values we can conclude that in the self-
consistent process the differences in the ionic potentials
are screened by the electrons so that a barrier in the
opposite direction results.

Similar results are obtained here for m = 2 and by
Pickett et al.(1978) for the (110) oriented SL. The reason of
~ this induced potential barrier is easily understood in terms
of the charge transfer. In order to visualize this transfer,
Figures I.5 and I.6 show, for m = 2 and 3 respectively, the
difference between the SL charge density and the charge of
each perfect crystal placed at the adequate spatial region.
In both cases, a net charge is transferred from AlAs to Gals.
Such a result could be expected from the Pauling's scale of
electronegativities (Pauling 1972}, where Ga has a higher
value than Al, so that the latter tends to transfer electrons
to the former. This effect is mainly concentrated at the
interface and it has a clear implication in the interaction
between localized orbitals. In our scheme we work with the
interaction between WF's ai(;) given by

ey (R = <a; @) |nlayE-R> (1.9)

where H is the self-consistent Hamiltonian, ﬁ a lattice vector
and i,j label two WF's of the set associated to the valence
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FIGURE I.5.~ Charge transfer in electrons per ion
selfconsistently computed for (GaAs)z-(AlAs)2
SL in the (001) direction. Layers of ions are
" represented by @ for As, A for Al and 0 for Ga.

et ———— .3 -




20

*eH I0F OQ pue TY 103 V ‘sy 103 @ Xq pajussaadax sae
SUOT JO s12keT ‘UOF3IoLITP (100) °u3 uy 1§ ©(s¥Tv)-F (sveD) - ..
26y pajndwod ATIU93STSUODIT9S UOT Iad SUOIFIOIT@ UT &6Ivy) -°9°I TNOII _.OI.

G00-

d
(2) 9V

1600




bands (Tejedor and Vergés 1979, S&nchez-Dehesa et al.1981b).
In Tables I.5 and I.6 we show some of the interactions for
m = 1 and 2 respectively. In order to compare with simple

TABLE I.5.- Interaction sij(§=0) (in a.u.) for the (GaAs)l—
(AlAs)1 SL in the (001) direction. Subindices G
and A refer to interactions in GaAs and AlAs,
respectively. The labels i,j correspond to the

ones in Figure I.1.

Neighbourhood €54 = <a; [H[a >

between bonds J J

Zero eGG(l,l) = 0.1790
€pa(3,3) = 0.1648

First neighbours eGG(l,Z) = -0.05(8
eﬁhi3,4) = ~0,0688
aGA(l,B) = ~-0.0663

Second parallel eGA(l,S) = 0.0144

neighbours

non parallel eGA(l,G) = -0.0018

eGA(1,8) = -0.0048

21

tight-binding models, it is sufficient to look at the inter-
action of a WF with itself because a WF essentially contains

atomic orbitals of two first neighbours. Table I.7 shows this

magnitude for different WF's in the (GaAs)3—(AlAs)3 SL. The
conclusion drawn from these results is that the self-
1nter§ction of Ga—-As bonds at the interface tends to be an
average of the two bulk values in agreement with a simple




22

TABLE I.6.- Interactions eij(§=0) (in a.u.) for the
(GaAs)z-(AlAs)2 SL in the (001) direction.

Subindices G and A refer to interactions in

GaAs and AlAs respectively. The labels i,j

correspond to the ones in Figure 2. We have

artificially labelled the centre of each semi-

cdnductor as bulk zone.

Neighbourhood
between bonds

Interface zone

Bulk zone

Zero

First

neighbours

Second neighbours

parallel

non
parallel

eGG(l,l)

sAA(3,3)
eGG(l,Z)

eAA(3,4)

sGA(l,B)

eGG(l,S)

eGA(11,15) = 0.0149

eAG(3,7)

= 0.1798

]

0.1594

= -0.0580

~0.0666

-0.0703

= 0.0135

= 0.0125

eAA(9,13) = 0.0137

cGG(l,G)

ega(12,15) = -0.0014

eag(9:6)

eapn(9,14) = -0.0026

= -~0.0020

= ~0.0034

EGG(S,S) = 0.1821
sAA(13,13) = 0.1662
EGG(S,G) = -0..622
EAA(13,14) = -0.0654

[P
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tight-binding model proposed by Schulman and McGill {1979).
However, this is not the case of the self-interaction of the
Al-As bond at the interface, which is significantly lower
than the bulk values. This clear difference with the simple
tight-binding model is associated to the change of the
mixture parameter A mentioned above and shown in Table I.4.
Let us finally discuss our results for the band
structure. Once the self~consistent potential has been
obtained, the valence spectrum is computed by diagonalizing
the Hamiltonian represented in a basis of Bloch sums of WF's
(Tejedor and Vergés 1979). Then, the calculation is rather
simple because the size of the matrix is just 8mx8m. Figures
I.7 and 1.8 show the valence band structure for m = 1 and 2,
respectively. Table I.8 gives the eigenstates at the valence
band edges for the three SL's we are concerned with. The main
result is the well known (Caruthers and Lin Chung 1978,
Schulman and McGill 1979, Andreoni and Car 1980) splitting of
some meV of the upper valence states at I'. As it was obtained
by Pickett et al. (1978) in their self-consistent calculation
for (110) GaAs-AlAs SL's, we get a non degenerate upper state,
but since the width of our SL is too small, such a state is
not concentrated at the GaAs region. Therefore, it cannot be
considered as a two dimensional SL state as the ones
experimentally observed in thicker SL's (Dingle et al.1974,
1975, Manuel et al.l1976, Sai~Halasz et al.1978). In order to
clarify the meaning of these band structures we present in
Table I.9 the levels at the I' point for perfect crystals
treated in the SL framework. A magnitude which gives the trend
of the band structure as a function of the SL thickness is the
valence band width. Table I.8 shows an increase of this width
as m increases. As shown in Table I.10, we also obtain a
similar increase for the total energy per atom, a magnitude
that, to our knowledge, is not possible to compare with any
experimental information. T

1.2.2.2., (111) Supenlattices

No experimental or theoretical information exists, to
our knowledge, for SL's grown in this direction. We have




FIGURE I.7.- Band structure for the VB of the (GaAs)l-(AlAs)l
SL in the. (001) direction. The origin of
energies is taken at the mean potential of the
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(000) (100) (%% 0) (000)

FIGURE I.8.~ Band structure for the VB of the
(GaAs) ,-(AlAs), SL in the (001) direction.
The origin of energies is taken at the mean
potential of the SL.
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TABLE I.10.- Contributions to the total energy (in a.u.) for
the (GaAs)m-(AlAs)m SL in the (001) direction
for different values of m.

m=1 m= 2 m= 3
EI -0.9727 -0.9611 -0.9611
Ey 0.2566 0.2571 0.2567
T 1.3223 1.3223 1.3229
Exc -1.1879 -1.1876 -1.1877
E s -0.5817 -0.5693 -0.5682
Eg -3.4961 -3.4961 -3.4961
En -4.0778 -4.0654 ~4.0643

applied our method to such a system because, together with
the (001) SL above discussed, they contain the two common
polar interfaces. Moreover, we will use the results here
obtained to analyze, in the next section, the valence band
discontinuities at semiconductor heterojunctions.

Figure I.9 shows the supercell used to calculate the
properties of a (GaAs)3-(AlAs)3 (111) SL with the same
approach that the above discussed for the (001) case. Again
we start with the ions placed at the ideal bulk positions and
minimize the energy as a function of the bond length, 1. We
get 1 = 2,403 ﬁ, which is practically the average of lGaAS =
2.401 & and 1AlAs = 2.406 ﬁ; previously obtained in
section I.2.1 for perfect zincblende crystals. Once this bulk

bond length has been determined, the interface ions are allowed.

to relax looking for a deeper minimum of the energy. In
contrast with the (001) SL where a net relaxation was obtained,
now the distance between Al and As interface planes increases
in a 0.5 %, but the distance between Ga and As interface
planes decreases in the same amount. In other words, no
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FIGURE I.9.- Supercell used in the calculation of the
' structure of a (GaAs)a-(AlAs)3 SL oriented
along the (111) direction. Heavy lines

represent the bonds (eq.(I.8)) from which WF's '
are built up.
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relaxation appears at this interface where jus% the As plane
slightly moves towards .the Ga plane but the Al-CGa distance
does not change. In spite of this difference, our results for
the variational parameters are rather similar in both systems.
Again the only change at the (111) interface is that the
mixture parameter A for Al-As bond significantly decreases
with respect to bulk values as shown in Table I:ll. This
similitude implies that charge transfer and differences of
mean potentials appear in this (111) SL in the same way as in
the (001) one. So we have

AV

V(GaAs) - V(Alas) = AVi + AVH + Ach =

-0.022 + 0.029 + 0.001 (in eV).

TABLE I.l1l1l.- Values of the mixture parameter A (eq.(8)) for
bonds in the bulk and at the interface (GaAs)3-
(AlAs)3 SL in the (111) direction. A, is for the

A
combination in AlAs bonds and AG for Ga—-As bonds.
Bulk Interface
A AA = 1,015 AA = 0,999
(GaAs)3-(AlAs)3
(111) . XG = 1,046 AG = 1.048

The charge density that AlAs transfer to GaAs implies that
the mean value of V(z) at GaAs is 8 meV higher than the mean
value of V(z) at AlAs. Since a figure of V(z) or the average
transfer charge would be very similar to Figure I.6, we give
here a different picture of the same points by showing in
Figure I.10 the contour plots of the total charge density
around the interface.

All these results bring to the conclusion that (001)
and (111) SL's are very similar, the main difference being




FIGURE I.10.- Total charge density at the interface of a
(GaAs)3— (AlAs)3 SL oriented along the (111)
direction. Units are in electrons per ion.
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that the former shows ionic relaxation at the interface and
the latter does not. One more difference appears when one
analyzes the spectrum of this (111) SL given in Table I.12.

TABLE I.12.- Band edges at T of the valence band of perfect
crystals and (GaAs)3—(AlAs)3 SL all of them in

the (111) direction. Energies in eV are referred
to the mean potential for each SL.

(GaAs)s-(AlAs)0 (GaAs)o—(AlAs)6 (GaAs)3—(AlAs)3
10.040(2) 9,760(2) 10.065(2)
10.036 9.751 9.927

9,665(2) 9,394 (2) 9.643(2)
9,652(2) 9.393(2) 9.405(2)
-2.253 . -2.623 -2.677

Now the upper state at T, placed 10.07 eV higher than the mean
value of the SL potential, is doubly degenerated and is
localized at the GaAs region. Since this type of localized
states has been experimentally observed in thicker (001) SL,
our result suggests that the transition from 3D to 2D
behaviour appears before in (111) SL's than in (001) ones,
where we have not obtained states localized in the Gaas
region.

I.2.3. Discussion
We have used a self-consistent localized scheme in terms

of WF's to analyze the structural and electronic properties
of several GaAs-AlAs SL's grown in the (001) and (111)
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directions. From the structural point of view, we have found
that those SL's with polar interfaces differ each other in
that the (001) ones present ionic relaxation while the (111)
ones do not. Nevertheless, this difference is not very
important because the relaxation around the As ions of the
(001) interface just affects to the first Ga and Al planes

on each side both increasing in a 2.5 % their distance to the
anion. Such small relaxation has no significant effect on the
electronic properties. In any case, this relaxation is a
purely interface effect so that it seems quite natural to
consider that the displacements here obtained can be valid
for thicker SL and heterojunctions.

Since we work with a localized scheme the influence of
an interface does not enter too much into the deep layers of
each semiconductor. Therefore (GaAs)m—(AlAs)m SL's, for both
orientations, show bulk-like behaviour in the central layer
of each semiconductor for m = 3. For instance, our results
for these m = 3 cases allow to see how AlAs transfers a
small amount of electronic charge to GaAs, so that a
potential barrier between both semiconductors appears. At
this point, it is very tempting to use this barrier A between
mean potentials to estimate the shift of the electronic
structure of GaAs with respect to AlAs for thicker SL's or
even an heterojunction of semiinfinite semiconductors. The
best magnitude to measure this shift is the difference AEV
between the top of the AlAs and GaAs valence bands, which
requires the position of that level EV for both bulk semi-
conductors. In order to be consistent with our approach, we
have computed that level in a SL framework for (E;'aAs)G(AlAs)o
and (GaAs)o(AlAs)6 for both orientations. We have obtained

ag (001) _ ,(001) _ ,GaAs(001) _ LAlAs(001) _ | ,o> oy
v v v
(1D o (1D gGans(111) | gAAS(LLL) _ o 505 oy

which are very similar each other. The unique experimental
information for this magnitude is obtained as a extrapolation
for x » 0 of this shift measured in GaAs-Ga,Al,_, thick SL's
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oriented along the (001) direction (Dingle et al.1975). The
experimental result is AEV = (0.15 = 0.03)E;, where Er is

the direct gap at the T point of the SL. In this work we do
not conzentrate on conduction bands which are required to
know Eg, but it is straightforward to use the self-consistent
Hamiltonian we have obtained to compute such magnitude. We
have got AE_ = 0.135 E; which compares fairly well with the
above mentioned experimental result. This suggests the
possibility of an analysis of thick SL or heterojunctions by
using the information obtained for ultrathin SL.

In spite of the similarity of both (001) and (111) SL's
with m = 3, the electronic spectrum shows a significant
difference. In the (111) SL the upper valence state is
spatially localized on the GaAs region as it has been
observed experimentally for thicker SL's. However, in the
(001) SL's such localization does not exist in our results.

X.3. ELECTRONIC CONDUCTION BANDS

I.3.1. Simple model

Once we have analyzed in detail the VB structure of
narrow SL's, we pay some attention to the conduction band
(CB) structure. We concentrate on (GaAs)4—(A1As)4 SL's along
the (001) direction because they have been studied
experimentally (Barker Jr.et al.1978, Merlin et al.1980,
Colvard et al.1980). Since the analysis of the CB is rather
more complicated than the one of the VB, we use a simple
Hamiltonian which can be justified from the self-consistent
calculations discussed above. .

We use a tight=binding model (Schulman and McGill 1979)
with four orbitals per atom. The tight-binding parameters
for perfect semiconductors are fitted to bulk band structureg_-—~»
(Osbourn and Smith 1979, Schulman and McGill 1979). So the
tight-binding matrix for the superlattice can be straight-
forwardly obtained. Its form is shown in Figure I.1ll. It is
organized in 8x8 blocks representing the integrals between
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FIGURE I.1ll.- Superlattice tight-binding matrix. Each block

represents an 8x8 submatrix. The upper right-
hand corner block, B8, links AlAs and GaAs
slabs. The matrix is organized in such a way
that each block corresponds to matrix elements
between orbitals centered on atoms in the same
(A and a) or adjacent (B, b or B) SL layers.,

B B
G
A B Q?.ss
BT A B
f .
% B %
@@ .
L[] N L]
L] \ L]
' \\ '
: N :
' '
t \\ :
] N '
' A ‘i[
\\ '7\9 '
\\
\\ b
+
b a b
s .
b a b
+
b a |




atomic orbitals. Each layer contains a single anion and caticn
per unit cell. We just retain interaction up to second
neighbours so that there are only two types of blocks. The
corner blocks contain the integrals between adjacent layers,
where each layer is in an adjacent slab. These blocks are

the typical ones connected with the SL and they contain the
phase factor exp(ikzd), where d is the slab width and k, is
the component eof the k vector perpendicular to the interface.
In this way the total size of the matrix is in our case
16mxlém = 64x64.

The GaAs and AlAs parts of the SL share common As ions
at the interface. Therefore, there is no problem in
determining the matrix elements for first-neighbours. They
are taken from the bulk values. However, the bulk fitting
does not provide parameters for second-neighbours at this
position. Instead, a simple average of As to As, Al to Al and
Ga to Ga parameters has been used.

The direct diagonalization of this matrix gives us the

whole band structure we are interested in,
I.3.2. Results

With this model we have computed the band structure
along the f-space direction perpendicular to the interfaces
in order to estimate the effective masses of the SL states.
Table I.13 shows the energies for different values of
k = Zw/d(0,0,kz) obtained with the tight-~binding parameters
given by Osbourn and Smith (1979). All the SL states given
in this table have their eigenfunctions located at the GaAs
spatial region, so that, as is well known, this is a SL of
type I, i.e. where electrons and holes are in the same region:
From these results we can estimate the effective masses
(at ') of these bonds. We get for the electron, heavy hole
and light hole, m¥ = 0.69, m* = 0.43 and m}, = 0.19, o
respectively. They are rather different from the ones given
by a Kronig-Penney model: m; = 0.073, m7 = 0.513 and
th = 0.08, which have been used to analyze the experiments
of light-scattering (Colvard et al.1980). However, the most
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TABLE I.13.- Eigenvalues (in eV) of the SL states in a
(GaAs)4--(AlAs)4 SL along the (001) direction.

(4a/11)kz
0 0.4 0.6 1

2.1942 2.1931 2.1921 2.1910
CB -

1.9408 1.9578 1.9735 1.9917

0.00264 -0.02484 -0.05764 -0.12881
VB 0.00260 ~0.02488 -0.05764 -0.12885
»

-0.00096 ~0.06335 -0.13735 -0.20633

important result is that we get m* = 10.6 for the effective
mass of the second conduction band. The reason is that this
very flat band comes from the lowest CB at X in GaAs. This

is due to the folding of the Brillouin zone. Since that

state has a very high longitudinal mass in perfect GaAs, this
fact appears, and even is increased, for the second
conduction band of the SL. We think that this result can be
of great significance for resonance phenomena as the ones
appearing at the Raman scattering experiment discussed by
Colvard et al. (1980).
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CHAPTER Il. METAL-SEMICONDUCTOR JUNCTIONS

II.1. INTRODUCTION

The mechanism of Schottky-barrier formation has been
the subject of many different interpretations (Rhoderick
1978). In the last few years, new experimental information
has been obtained which points to the effect of the metal-
semiconductor reactivity on the barrier formation (Brillson
1978, Andrews and Phillips 1975, Ottaviani et al.1980,
Williams et al.1978, Brillson et al.1981). In particular,
the abruptness of the junction interface seems to be a
function of the metal~semiconductor bonding, with the
consequent effect on the barrier height (Brillson et al.
1981) . Very recent experimental evidence has shown that
metal-semiconductor interdiffusion is by no means a rule and
that some structural effects, not completely understood, may
inhibit interdiffusion, allowing the existence of well-
defined abrupt interfaces. Silver on Si and InP (McKinley et
al.1979, “"illiams et al.1977), as well as some silicides on
Si (Ho et al.1979), are well-known cases of abrupt junctions.

Other experiments with etched interfaces (Montgomery
et al.1979, Spicer et al.1980, Williams 1981, Mottram et al.
1979) show the dependence of the height barrier on the kind
of chemical compound and interlayer formed at the interface.
These and previous experiments point to the importance of a
few layers of the interface on the barrier formation.

This experimental evidence suggests that metal-
semiconductor junctions can be classified into three main
groups: (i) Abrupt interfaces, for which a rather ideal

junction is formed with a well defined separation between BUS—

the structures of the metal and the semiconductor; (ii)

etched interfaces, for which a reactant, say H, O, Cl is

left between the metal and the semiconductor; and (iii)
reactive interfaces, for which the metal and the semiconductor

interdiffuse and/or form a new chemical compound at the
interface.
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All this rich experimental information has proved a
formidable challenge to theoreticians. Even abrupt interfaces
are far from a completé understanding, although they have
received, due to obwvious reasons of simplicity, a greater
attention.

Primitive theories have analyzed the Schottky-barrier
formation by means of a thermodynamic argument (Schottky
1942) and have included an appropriate density -of states at
the interface (Bardeen 1947, Heine 1965). Leaving apart
other many-body approaches (Inkson 1973, Tejedor et al.1977),
we mention two recent models advanced by Spicer and Froeouff,
respectively. The defect model (Spicer et al.1980, Williams
198") seems to be particularly appropriate for metals on
cleaved (110)-surfaces of III-V semiconductors, althougn it
does not seem applicable to covalent semiconductors. Froeouff
and Woodall (1981) have advanced a different model by a
combination of a Schottky model and the formation of clusters
at the interface.

At a different level of sophistication, we have the
work of Cohen and coworkers (1977), where a very elaborate
self-consistent calculation of an abrupt Al-Si junction has
been given, within a pseudopotential theory. Unluckily, this
line has not been pursued further and no systematic analysis
of the height barrier has been given within this framework as
a function of different metals and/or interlayers. This lack
of systematic analysis for the ideal (abrupt) interface
within a selfconsistent approach is the most unfortunate,
since this prevents'comparing -~even for the most simple model
(abrupt interfaces)- theory and experiment, a comparison
which could allow getting a better understanding of the
specific effects associated to interdiffusion and reactivity.

Quite recently, we have used a simple pseudopotential
model (Louis and Flores 1981) to explain the main properties
of abrupt and etched interfaces. In this approach, the
crucial quantity is the amount of charge located in the semi-
conductor surface states reacting with the etching agent. The
selfconsistent redistribution of this charge is analyzed as a
function of the interface conditions. The main conclusions
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of this analysis are the following: (i) For clean covalent
interfaces,the junction wehaviour turns out to be near the
Bardeen limit; (ii) €for etched covalent interfaces, the
surface Fermi level may shift to higher (or lower) energies
for electronegative (electropositive) reactants.

In this Report, we have further analyzed clean and
etched abrupt Si-junctions by means of a realistic self-
consistent calculation based on a tight-binding model. The
purpose of this calculation is to obtain the barrier heignt
and the change in the semiconductor surface Fermi level due
to the barrier formation. As mentioned above, we can expect
that, in this barrier formation, the main effects come from
the interlayer and a few layers of the interface. We think
that tight-binding models are very well suited to analyzing
these local effects. In §II.2.1 and II.2.2 we give our method
and in §II.2.3 we present our results and give the
discussion,

On the other hand, in 5II.3 we analyze non-abrupt
junctions for III-V semiconductors and discuss the conditions
under which the metal and the semiconductor interdiffuse.

II.2. CLEAN AND ETCHED METAL~SI JUNCTIONS

1X.2.1. The model

We describe both the semiconductor and the metal
electronic structures by means of a tight-binding method. For
Si, we use sp3-hybrids in each atom, and include interaction
parameters extending up to second neighbours. This is a
standard procedure; details about the parameters used in the
actual calculation are given below (Chadi and Cohen 1975,
Pandey and Phillips 1976, Menéndez and Vergés 1981). As
regards the metal, we use two orbitals in each atom trying
to simulate a broad and a narrow band associated with a s-
and a d-band, respectively (Harrison 1980). This model is
only a rough approximation to the metal structure but, as
will be discussed below, the barrier formation is very little
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dependent on most of the details of the metal density of
states; in other words, this two-~orbital approximation to the
electronic metal structure (a noble or a transition metal)
turns out to be sufficient for our purposes.

The crystallographic structure of the clean interface
may be rather complicated. Even for abrupt interfaces, the
metal atoms do not exactly match the Si-structure. For
instance, for Ag on Si (McKinley et al.1979), Ag-atoms form
a monolayer with a three-fold symmetry having a lateral
separation roughly corresponding to that of the Si-Si bond.
A complete calculation of this structure would be rather
cumbersome. However, since the barrier formation seems to be
dependent only on very general properties of the metal
density of states (see below), we propose to calculate the
metal-semiconductor junction by assuming the metal atoms to
form a (111)-f.c.c. structure matching the (111)-Si face. We
have chosen that structure having the lattice parameter, a,
closer to the actual ones of most noble and transition
metals: this yields a = 3.12 & (compare with 3.52 & for Ni
and 4.09 K'for Ag). Note that with this parameter there are
three metal atoms in the surface unit cell defined by the Si
structure. It is worth remarking that although the lattice
parameter is different from the actual value for any metal,
the interaction parameters defining the s- and d-bands have
been chosen (see below) to reproduce approximately the
electron density of states of that metal forming the junction.

On the other hand, we assume to have at the interface
the same interaction parameters for the metal and the semi-
conductor as were chosen in the bulk. The clean junction is
formed by introducing some interaction parameters between
the outermost Si~atom and the metal atom sitting just on top
of it; specifically; we assume to have definite interactions
between the dangling-bond Si-hybrid and the two metal

e ——— -

orbitals (see below).

For an etched junction, we introduce an interlayer of
H between the metal and the semiconductor with one ad-atom
in the surface unit cell. For H we use a s-orbital and
introduce definite interactions with the last layers of the
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metal and the semiconductor (sec below). The dependence of
the interface properties on the electronegativity of the
atom forming the interlayer (say, Cs or Cl irstead of H) has
been analyzed by a proper modification of the atomic
parameters.

Let us now turn to discuss how to get selfconsistency
at both the clean and etched junctions. To this end, it is
convenient to analyze in successive steps the following cases:
clean metal surfaces, clean semiconductor surfaces, metal-~
metal surfaces, metal-semiconductor junctions and metal-

interlayer-semiconductor interfaces.

IT.2.1.1. Clean metal sunfaces

In this case, we assume to have until the surface the
same interaction parameters between hybrids defining the
Hamiltonian in the bulk. However, due to the surface
perturbation, it is necessary to introduce a diagonal
perturbation in each layer in order to get selfconsistency
(Desjongqueres and Cyrot-Lackmann 1975). When these diagonal
perturbations are taken zero, it appears in the metal a lack
of charge neutrality which is practically localized in the
last surface layer; then, selfconsistency -which is equivalent
in this case to charge neutrality- can be achieved by a
pruper switching on of a diagonal perturbation in the last
surface layer. The effect of this perturbation in successive

. layers is negligible in such a way that, practically, they

keep their neutrality with independence of the surface

perturbation.

I1.2.1.2. Clean semiconductor sunfaces

Here, we again consider.the crystal extending up to a
surface, with the same interaction parameters as in the bulk,
but with diagonal perturbations switched on, in principle,
in each layer to get selfconsistency. Let us consider a
(111) -covalent face. For this surface, Kleinman (1975) has
shown that the éurface band is half-occupied; with this
condition satisfied, there is complete charge neutrality in
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the crystal, although there might be no local neutrality in
different layers. This local neutrality can be achieved by
introducing appropriate diagonal perturbations in each

layer as was the case for the metal. In similarity with this
case, a diagonal perturbation in the last surface layer can
be adjusted to give neutrality in the same layer, and this
gives automatically -due to the complete neutrality of the
crystal~ neutrality, in practical terms, in t! e second and
further layers (Djafari-Rouhani et al.l1979). It is of
interest to remark that the condition of local neutrality

for the last surface layer is practically equivalent to the
following condition: charge neutrality in the first sublayer.
This can be understood in the following way: for a semi-
conductor, the surface perturbation produces an impértant
transfer of charge between the last two layers and leaves
practically unperturbed the rest of .: - crystal; then, with
a proper adjustment of a local perturbation at the last layer,
this transfer of charge can be reversed and local neutrality
can be obtained. From a different point of view, this
transfer of charge is obtained by shifting the surface band

energy and moving the surface Fermi energy.

I1.2.1.3. Metal-metal intenface

For this case we can also assume to have localized
diagonal perturbations in the last layers of both metals. On
the other hand, a transfer of charge between these two
layers must appear in order to create an electric dipole
which equalizes the Fermi levels of both systems (other
layers keep their neutrality). Then, selfconsistency can be
achieved by adjusting these charges (of opposite signs) to
the values determined by the difference between the Fermi
levels of both metals, by means of two perturbations
localized at the two last layers.

Ir.2.1.4, Metal-semiconducton selfconsistency

We can now discuss how to get selfconsistency at the
clean metal-semiconductor junction. In similarity with the
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metal-metal interface, we can expect to have diagonal
perturbations and a transfer of charge at the two last layers
of both crystals; at variance with the metal-metal interface,
these charges, however, are not determined by the condition
of equalization of both Fermi levels, since the metal Fermi
level can be freely moved across the semiconductor gap.
Accordingly, in comparison with the previous case (§II.2.1.3),
we have a new freedom in the problem: the relative position
of both bulk bands. This freedom -due to the existence of the
semiconductor gap- is compensated by a characteristic of the
same semlconductor surface: the strong coupling between the -
last two layers of the crystal (see §II.2.1.2). We shall
immediately see how this characteristic allows us to
introduce a new condition which completely determine our
problem.

According to this discussion, we have three parameters
which have to be determined to achieve selfconsistency at the
metal-semiconductor interface: the two diagonal perturbations
at the last layers of the metal and the semiconductor, and
the induced dipole, D, between both crystals. These
parameters are determined by the following conditions: (1)
the first one is given by the assumption that the interface
transfer of charge must be localized in the two last layers;
this is a condition which is practically satisfied for the
metal (see §1I.2.1.l1). For the semiconductor, however, the
first sublayer is strongly connected with the surface layer.
Accordingly, the condition of localization of the transfer of
charge to the surface layers give the following equation:

(1) _
which expresses a condition of charge neutrality at the first
semiconductor sublayer.
(ii) The second condition is given by the whole charge
neutrality. This yields:

‘“;g). + 5"»:(10) =0 , (11.2)




where superindex (0) stands for the surface layer.

(iii) Finally, the transfer of charge between the
(0)_ (0)
M

-én
sc

metal and the semiconductor, measured by dén ¢ give

the induced dipole, D, which is proportional to
0)
c
semiconductor surface layers:

Gné and to the distance, 4, between the metal and the

- (2) :
D= uddnsc .. (II.3)

Egs. (IZ.1), (IT.2) and (IX.3) give the three conditions
(0) V(0)
sc ' M

perturbations at both surface layers) and D. Eq.(II.l) is the

determining the three parameters V (the two diagonal
new condition associated to the semiconductor characteristic
commented on above. (For the metal-metal interface, eqg.(II.1l)
disappears while D is given by the difference between both

Fermi levels). It is of interest to note that eq.(II.3) gives,
(0)

sc '/
distance of, say, d = 2.69 & (Ag-Si case) and én

since for a
(0)
sc
obtain D = 37,9 eV, a very high value. Then, in a first

in any case, a very small value for én

=1 we
approximation we can substitute eq.(II.3) by
Gn(o) =0 . : (I1.4)

scC

We have now in this approximation the following three

conditions:
(0) _ (1) _ (0) _ .
snsc = 6nsc = anM =0 ; (I1.5)

let us call Vgc, Vg and D to the values of the three

parameters Vég), Véo) and D, as obtained from conditions

(II.5). This solution gives a barrier height, and a

I
bn'
Fermi level in the semiconductor gap defining the so-called

charge neutrality level. (Rhoderick 1978, Tejedor et al.1977).

i ————— -

The general solution for the conditions given by egs.
(I1.1), (IX.2) and (II.3) is close to the one obtained with
eq.(IT.5), and it can be obtained from the last one by a
linear perturbation of the parameters Vég), V§°) and D. The
idea is to obtain the linear modifications in the charges
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Gnég), Gnéé) and Gnéo) as introduced by small changes in

V(o), (0 ang D. Thus, we write:

sC M
. (1) (1) ‘ (1)
(i) _ én't (0) , én (0) . én
§n = =0y GVSC + ()] GVM + ———— 6D , (11.6)
Gvsc 6VM §D
where Gn(l) stands for énég), énéé) and Gnﬁo), and the

coefficients Gh(i)/évég), Sn(i)/svéo) and dn(i)/GD are

obtained by small changes of Gég), Géo) and 6D in the solution

obtained with conditions (II.5). It is now an easy matter to
obtain evég),
by egs. (I1.1), (II.2) and (IX.3). This procedure yields the

6Vé0) and D by imposing the conditions given

following egquations:

ey sv(0) oo + -y §D = 0 (II.7a)
S T ST
(0) (0) (o)
én én én 0
sc (0) scC (0) sc - (0) _ (D +6D)
;5737 cvsc + EETET 5VM + = §D = én__' = —a (II1.7b)
sc M
(0) (0 (0)
én én én
e A oy sy + —2— o0 = enl® = -en!D L1170
8V, 5V, §D sc

In our calculations (see below) we have found that

(1) (0)
Gnsc ) §ng o -
w0y~ 5(0) ~

§Vy §Vy

’

in such a way that éqs.(II.?a) and (II.7b) can be now used to
(0)

obtain Gvsc and §D:
‘"éé) (0) G"éé)

o7 oV 4+ —2Z_ 5D = 0 (II.8a)
GVSC éD .




(0) (0)
én én =

sc_ syl0) , _Sc sp : DHSD (II.8b)
=(0 sC = ad
Gvsc §D

Note tha:t fer D/ad » 0, we recover the solution given above:
5vég) = 6D = 0. In general, these equations give 8D, the
change in the height barrier as a function of D and other
parameters. Note that D = ¢y = X - &, where ¢y is the metal
workfunction and X the semiconductor affinity.

Thus, we write:

D/od [ - ]
8D = — 2 S|o,-x—9¢ . (II.9)
sn (0) Gn(l)/én sn L0 M bn
.__sc sC + sc_ _ 1
5(0) (1) ,,5(0) 5 ad
sV, . en ' /e 6D

Apparently, this equation defines a linear relationship
between 6D, the change in the barrier height, and (@M—x);
note, however, that S is, in general, a function of the
interface properties as defined by the metal and semiconductor
densities of states. Once S is obtained from the actual
properties of the interface, eq.(9) gives the change in the
barrier height with respect to the charge neutrality level

and the final interface Fermi energy.

I1.2.1.5. Metal-interlayer-semiconducton selfconsistency

Let us now discuss how to get selfconsistency at the
metal-interlayer-semiconductor junctions. Comparing with the
metal-semiconductor interface we have 1 new freedom in the
junction: the one associated with tl.e interlayer. Thus, we
have to determine selfconsistently its charge, Ny, and its
mean level, EH'

Accordingly, we have in this junction four parameters
to be determined ;elfconsistently: the two diagonal
perturbations at the last layers of the metal and the semi-
conductor, Véo) and V(o)

sc
crystals, and the mean atomic level for the interlayer, E

, the induced dipole, D, between both

H.
The conditions determining these parameters are the
following: (i) as in the metal-semiconductor junction, we
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impose charge neutrality at the first semiconductor sublayer:

(1) _
sng' =0 . , (II.10)

{ii) The condition of whole charge neutrality yields the
following eguation:

{0) o (0) _ :
Gnsc + GnH + 6nM =0 . (I11.11)

(iii) On the other hand, the induced dipole, D, is determined

by GnH and Gnég), according to the equation:
= (0) '
D= a{ddnsc + d 6nH} ' (I1.12)

where d (d') is the distance between the semiconductor surface
layer (interlayer) and the metal surface layer (compare egs.
(IX.12) and (II.3).

(iv) Finally, we need a selfconsistent equation for the

mean atomic level, E This can be obtained by using a Hartree

He
model; within this approximation, the mean atomic level
depends on the electrostatic potential induced in the
interlayer and on the electrostatic repulsion between

electrons of different spins inside the atom. Thus:

1

E, = Eé0)+ a(d-d'{snég’ + 3 Usn, . (I1.13)

H

In this equation, Eéo) is the mean atomic level for the
(0)
sc
induced at the interlayer as measured from the semiconductor,

isolated atom, a(d~d')sn is the electrostatic potential

and % Usny, gives the mean intraatomic repulsion (énﬁ =

1

5 UGnH). Note that a reasonable approximation to is to

take for it the mean value of the ionization and affinity

levels for the ad-atom.’ | m———

Eqs. (II.10), (II.11), (II.12) and (II.13) give the

four conditions which determine the four parameters VQO),
Vég), D and VH' It is worth noting that, in similarity with

the metal-semiconductor interface, condition (II.12) can be
substituted by the following eqguation:
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6D = s'[o,- x -8 ] , (II.15)

b
level of the etched junction and S§' a paraneter depending on

where, as discussed above, ;'n is the charge neutrality
the interface properties.

II.2.2. Method of calculation

In order to obtain the charge and the density of states
associated to a given layer, we have calculated the Green

function, G, defined by the following equation:
(o-H)-G =T , (II.16)

where w is the energy, H the Hamiltonian written in a tight~
binding basis, and I the unit tensor. In our representation,
we write HE and G in a basis defined by a superlayer number,
m, an orbital index, «, and a momentum, 2, parallel to the
surface and belonging to the first Brillouin zone of our two-
dimensicnal surface lattice. Let us call a the number of
independent orbitals in each superlayer.

In this representation, a matrix element of, say, the
am,a‘m'(z)' In the
following, instead of using this notation, we shall write

Green function, E, takes the form G

> > .
gm,m'(K) or gm,m' {x understated), in such a way tﬁat an
element (a,a') of the matrix G , (k) is G (k).

~m,m am, a'm

- Moreover, in order to simplify the discussion, we consider

the case of a clean semiconductor surface. Later on, we shall
see how to analyze an interface.

For a clean semiconductor surface, we write equation
(II.16) in the tight-binding representation by taking the
elements (am,a'0), where o stands for the surface superlayer;
this yields:

«G - H

&M, 0 %.em,m' gm',o = gm,o f (I1.17)

Let us now assume that the interaction between orbitals
extend up to second neighbour superlayers; with this particular




w
3

case we try £o show how to generalize the procedure to long
distance interactions..Then, eq.(11.17) can be explicitely

written as follows:

(o-Bo,0"S0,0 =~ Ho,1°€1,0 ~ o,2°%2,0 = £ (11.18a)

“Hy,0°S0,0* (781 11°%,0 = B1,2°%,0 = B1,3°C5,0 = 0 (II.18b)

Hy 0°S0,0 ~ H2,1°%1,0 * (v 83,20 % ,0 = By, 3°G3,0 -
-8, 4°S4,0 = 0 (II.18c)

~§m,m—2'gm-2,0 - gm,m-l'gm-l,o + [mﬂgm,nJ'gm,O -

- H H o, (II.184d)

B, Sm+1,0 ~ Bmyme2"8me2,0

where the different interactions between superlayers m and

m' are given by H and use has been made of the fact that

H '
interactions ext;gémbnly up to second neighbours superlayers.
It is convenient to remark at this point that a superlayer,
in the language used here, may be built up by several
crystal layers; the number of crystal layers forming a
layer is given by that number allowing us to write eq. (II.16),
well inside the bulk (Lee and Joannopoulos 1981), in the
form given by eq.(II.18d). For Si, a superlayer has two
crystal layers.

For an ideal structhre,

Bu,m = Hlm-m') (II.19a)
and

—m?y = yg¥ - .
ga's(m m') gB'a(m' m) . _ (II.19b)
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For simplicity we limit our discussion to the case in
which for the third superlayer (eq.(II.18c)) we recover the
general equation (II.18d). (In our second neighbours
approximation, this implies an ideal unrelaxed surface). A
more general case can be readily obtained. For the case of
an ideal unrelaxed surface, eq.(II.19a) can be used for all

the matrix elements Em appearing in egs. (IX.18).

'
In the literaturé? these equations have been solved by
the transfer-matrix method (Falicov and ¥Yndurain 1975, Louis
and Yndurain 1977, Verg€s 1978), by reducing them to a
finite system by taking a slab (Pandey and Phillips 1976),
or by other methods (Lee and Joannopoulos 1981). In our
procedure, we have followed decimation techniques as applied
in the renormalization group method (Goncalvez da Silva and

Keillexr 1981). The advantage of our procedure is its gquick

convergence and its saving of computer time.
It is now convenient to rewrite eqgs. (II1.18) in the
following way:

w=g(0) "B 1%o,0 “§(2) 0 £€2,0 3
+ = .
-g(l) m—g(O) Lgl,o -g(l) -2(2) 23'0 0
{ . o (II1.20)
_2(2) _g(l) #m-2,0 w—g(O) -g(l) gm
+ +
0 —2(2) Lgm—-l,o -5(1) w—g(O) gm+l
B o ] |Sme2,0 ,
=0 (IX.21)
~H(1) - 1S3, 0
m even, or equivalently, with an obvious notation:
i
¥ 4o * Iy ja+ o \ (II.22a)

D fm2t Ehnt 11 Jme2 =0 - (II.22Db)
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In these equations, 0,2,4,..., are the numbers associated
to the different supenrfayenrns formed by the superlayers (0,1),
(2,3), (4,5),... and so on. Note that the number of super-
layers defined inside each superlayer is related to the
order of the interaction (second order here). According to
decimation techniques, we proceed in successive steps by
eliminating the even Green functions associated to
superlayers 2,6,10,..., in egs.(II.22). Thus, in a first
step we consider the following equations:

éz‘ﬁo ¥ 2'52 *11°84=0 (II.23a)
B2 fat ¥ fe s =0 (1I.23b)
§2°§8 WGt :Efl'élz =0 (1I.23c)
and write

ﬁz B Etrl[éz' o * f17§al (II.24a)
56 = ’3—1[32'@1 + §1‘§8] (II.24b)
§1° B —5“1[%2',?8 * ;1'5121 . (II.24c¢)

&~

Now, these equations are used to eliminate 52, §6’
ng"" from egs. (II.22). This procedure yields ®
&

- I
‘52]‘ 0~ [;}1'&' 1'31] ‘§4 = [;] (I1.25a)
~1 -1 -1
R AN R P S R IS S PR A
- [%1"[1’.»,1]'53 =0 (II.25b)
&
ol . -1 -1
~[e2¥ 2! 54 A -2 R ST P ':ez]'gs -

-1
- . . . = o . .
Lgl g El] 512 (I1.25c)
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These equations coincide with egs.(II.22) by an
appropriate renormalization of the different matrixes. Thus,
with the following definitions:

-1
1 = - » .
Bt av (11.262)
W' =W - 'W-l-t - Tae “l'r (11I.26Db)
~ P x]l = =2 Rr2 E w1l .
1! = -y oW Leq (II.26¢)
=1 ]l = a1l *
1) = —po oW e (II.26d)
&2 A2 % a2 ’

we recover formally egs.(1I.22) with new renormalized
parameters. For instance, éi and 55 measure the effective
interaction between renormalized superlayers 0 and 4, 4 and
8, and so on, while [E - Ll'ﬂ-l’;zl can be defined as the
effective natrix of (w-H) for layer 0 and
(¢ - 31°9 Loz - 32§ 1-31] the same effective matrix for
superlayers 4,8, ...

Now, the procedure can be iterated, and at any step,
say p, we obtain the following matrixes as a function of tne
ones obtained in>step {p-1):

(p) _ ,(p-1 (p-1 (p-1)1~1 _(p-1 I1.27
sp = gsp ) _ llp ),[Ebp )] ,Ezp ) ( a)
(p) _ {p-1) {p-1) {(p-1)7-1 _{(p-1)
AR A e ]7h5oP
(IX.27b)
-1 ~1)7-1 -1
- ;ép ).[Eép )] ,;{p )
L{p) = 'liptl)-[yép'l)]'l'zip-“ (I1.27¢)
;;P’ = -;z(p"l)-[ﬂép“l)]'l-zz(p'” . (II.274)
Note that for the second ste 1(2) d (2) i
Pr g1 and %, give the

effective interaction between renormalized superlayers 0 and

8, 8

effective interaction for superlayers 0 and 16,

In general, after p steps, 1 and r(p) ive the effective
g el &2 g

(3)

and 16, and so on, while ;1 and 553)

(p)

interaction between superlayers 0 and 2p+1' having

measure the
16 and 32,...
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renormalized out 2P superlayers. This is the important point
of the procedure followed in this paper, since the number

of renormalized superléyers grows with an exponential power
of the number of steps. On the cther hand, we can expect
both ;{p) and gép) to decrease, for any value of w, with

the increasing number of steps; this is a conclusion that
can be reached on physical grounds by noting that the
effective interaction between superlayers mus. ‘be small

when they are far apart. Let us assume that, after Py steps,

;ipo) and gépo) are negligible. Then, egs.(II.25) reduce to:

(pg) 1
yspo -ﬁo = |® (II.28a)
(po)
. =0 . (II.28Db)
+
(po)
It is obvious from egs.(II1.27) that when lipo) and I 0
are small enough, a new ?tep produces no change on the
values of ﬁépo and Egpo ; the physical meaning of this

result is clear: the surface and bulk superlayers are

w(po)
s

practically decogpled. Then, W and Qépo) give the

effective matrixes of (m—g), for the surface and bulk

superlayers, respectively.

(p)
2

In practical terms, T{p) and I become small as a

[ 1
function of the chosen degree of accura?y for our effective
lpo and ~T?fpo
for step (p0+1), t?e diff?re?ces betYeenlfhe val%es+2§
Po PO Po* PO

(or §, ") and W_ (or ¥ )

smaller than a given number, for any frequency. This is

Hamiltonians. Accordingly, we neglect 2z when,

every term of Es
equivalent tu say that, to a given accuracy, a slab of 2p0
superlayers is large enough to decouple both surfaces.
Note that our results, after Py steps, are equivalent to
the ones given by the matrix transfer method after 2po

steps: (py) (pg)
Po 1]
Hs and Eb

the isolated surface and bulk superlayers, respectively,

give the effective Hamiltonians for

and allows us to obtain, for instance, the density of
states not only for the surface but for the bulk too. As
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regards y;po)
Hamiltonian in a basis which includes not only the dangling-
bond orbital, but the 8 orbitals associated to the last

two layers.

A similar argument can be applied to obtain the same

, this matrix gives for Si an effective

surface matrix for the metal. In this case, gs is a (6x6)
matrix, as corresponds to two orbitals per atom, three
atoms in the surface unit cell, and a nearest neighbour
interaction.

Once that Ws has been determined for both the metal
and the semiconductor, we analyze the clean junction by
introducing the corresponding hopping interaction; in this
way, the clean interface is analyzed by inverting a 14x14
matrix. As regards the etched junction, we have one more
atom in the surface unit cell, and thus we obtain for this
case a 15x15 effective Hamiltonian.

From the point of view of the actual calculation it
is worth commenting three points: (i) as is well-known, in
all the matrix-transfer methods a finite broadening must be
introduced to get meaningful results. This amounts to
substituting «w by w+ié, where § is a guantity related to
the degree of accuracy accepted for the calculation. In our
case, we have taken 6§ = 0.05 eV, in such a way that the
accuracy of our results can be expected to be better that
0.1 ev. (ii} On the other hand, in order to get the same
accuracy in the effective Hamiltonians, ﬁs' we have to give
6 steps in our calculation (p0 = 6). (iii) Finally, let us
comment that in order to obtain averages in the surface
Brillouin zone, we have taken 45 points in the irreducible
part of it (Chadi and Cohen 1974).

II.2.3. Results and discussion for the clean metal~

" . semiconductor junction

In our actual calculation we have adjusted our
parameters to a Si-Ag interface. For this case, the metal
Fermi level lies in the s-band; however, in order to analyze
the dependence of the junction properties on the metal
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density of states at the Fermi level, we have used the same
parametrized metal band structure, but have changed its
Fermi level position.

In Table I.1 we give the different parameters used to
calculate the Si-band structure: we have considered the
three different cases given by Pandey and Phillips (P-P)
(1976), Chadi and Cohen (C-C) (1975) and Menéndez and
Vergés (M-V) (1981). P-P and C-C parameters give a very good
valence band description. However, a free semiconductor
surface calculated with the P-P parameters has its Fermi _
level almost coinciding with the valence band edge, while for
the C-C interactions there appears a too much wide thermal
gap. With the M-V parameters we obtain a better description
of the main gap and the electron surface states, although
the valence band is not so well described as with the P-P
and C-C interactions.

As regards the metal, we have used the following
parameters adjusted to give an appropriate density of states
for Ag (Harrison 1980):

Voo = ~1.00ev, V4= -0.25ceV, Vgg = ~0-25 ev,

a€s = -3.00 ev;

here Veg? Vsd and Vdd are the interactions between the
nearest neighbours s-s, s-d and d-d orbitals, respectively,
while €4 and e, are the d and s orbitals levels.

The junction is formed by introducing a given
interaction between the Si-dangling-bond hybrid and the
6rbitals of the on the top-Ag atom. We have chosen the
parameters defining these interactions by taking a geometrical
mean value between the interaction of two hybrids forming
a Si-bond and the s-s {or the d-d) interaction for the
metal. In Table II.2 we give the values used in the
calculations for the different semiconductor models: a
second set of values defining the interactions (the smaller
ones in Table II.2) have been used in order to analyze the
dependence of the barrier properties on the strength of the
metal-semiconductor bond.
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TABLE II.l.- Interaction parameters used in the calculation
of the Si-band structure. P-P: Pandey and
Phillips. C~C: Chadi and Cohen. M-V: Menéndez
and Vergés (in eV). Vis V2, V3, Vyr V5 define
the first-neighbours interactions in C-C notation;
(ppo)2 and (ppn)z define the (P-P) second
neighbours interactions.

-

P-P c-C M-V

v, -1.10 -1.80 -2.04

v, ~4.10 -5.85 -4.90

vy -0.55 -0.20 -0.43

v, 0.24 0.85 0.24

Vg -0.27 -0.60 0.57
(ppo), 0.58 0.00 0.60
(PP™) -0.10 -0.36 0.02

TABLE II.2.- Interaction between the dangling-bond hybrid of
Si and the on the top-Ag atom orbitals. VHs and
VHd refer to the s and 4 orbitals respectively,
while (a) and (b) stand for the weak and strong

coupling (in ev).

p-p c-c M-V
| (a) ~1.50 -1.23 -1.50
vﬂs
(b) ~2.50 -3.42 -3.00
(a) ~0.50 -0. 135 -0.50
v
Hd (b) -0.70 -1.02 -1.15
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In Figures I.l1l to I.6 we give the density of states for
the semiconductor surface layer, as calculated with the
conditions given by egq.(II.5) and the P-P and the C-C
parameters, for the following cases: (i) free surface;

(ii) Ag-Si interface for weak-semiconductor-metal coupling
(see Table II.2); (iii) same as (ii) for strong coupling.
These figures have been calculated by assuming that the Fermi
level in the metal lies in the d-band; for this case, the
following general results of our calculation are better
illustrated: (a) the Fermi level at the junction, as

measured from a fixed point in the semiconductor bulk, moves
towards the valence band for increasing values of the metal-
semiconductor interaction; (b) the density of states at the
Fermi level decreases for an increasing coupling between the
metal and the semiconductor; (c) as far as the density of
states in the main gap decreases with the metal-semiconductor
bond strength, we find a corresponding increase in the
density of states of the valence band near the top band-edge.

A word of caution must be put nere. For the P-P
parameters, the Fermi level at the free semiconductor surface
practically coincides with the valence band ecdge. As the
junction is formed, the Fermi level enters the valence band;
then, the procedure followed in this work is not fully
apprdpriate since selfconsistency cannot be achieved in the
inner semiconductor layers. However, we have solved tie’
junction for this case by looking for a selfconsistent
. solution only in the last two semiconductor layers, and
neglecting the lack of neutrality which must appear in the
inner layers. For this reason, the results obtained with the
P-P parameters must be taken only as indicative.

Due to this comment and to the fact that the C-C
parameters give a too wide semiconductor gap, we consider
that the results obtained with the M-V parameters, as regards
the change in the Fermi level, GEF, between the free surface
and the junction and S, are the best ones given by our
calculations, For the case of a specific Ag-Si junction (with
the metal Fermi level lying in the s-band) we have obtained
the following results:
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GEF = 0 ¢ 0.05 eV, S = 0.07 (weak coupling) ,
and
SEF = -0.1%5 * 0.05 eV, s =0.14 (strong coupling).

According to the way the interaction parameters for
the metal-semiconductor coupling were chosen, we expect the
actual junction to be closer to the strong corpling case.

The effect of the metal density of states at the Fermi
level on the junction properties has been analyzed by
assuming, in a second case, that the metal Fermi level lies
in the d-band. With the M-V parameters we have obtained the
following results:

SE

|
"

-0.35 £+ 0.05 ev, S 0.04 (weak coupling)

F

I

0.11 (strong coupling).

4]
n

SE

F -0.60 + 0.05 eV,

These results show an important dependence of GEF and
S on the metal density of states at the Fermi level,
although the details of this density around this level are
unimportant.

Coming back to the Ag-Si junction, note that the
barrier height is a function of the charge neutrality level,

the slope § and the metal workfunction ¢,. As regards the

charge neutrality level, we take into acgount the
experimental evidence (Margaritondo et al.1975) that EF' at
the free semiconductor surface (a 111-7x7 reconstruction),
is 0.55 eV above the valence band top. By using the values
obtained for the case of étrong coupling interaction we

find that the charge neutrality level is 0.4 * 0.05 eV above
the valence band top. With this value and ¢M(Ag) = 4.4 eV

we obtain the following barrier height:

obn(Ag-Si) 0.66 + 0.05 ev ,

a value to be compared with the experimental barrier height
of 0.79 eV (Rhoderick 1978). This result shows that, indeed,
the metal-semiconductor coupling is close to the strong

66
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coupling case, and that the actual parameters defining this
coupling must be even a little greater.

It is of interest to consider now the general
conclussions that can be reached from the results given above
for GEF and S as a function of the metal-semiconductor
coupling strength and the metal density of states at the
Fermi level. Our results show that GEF increases with both
the metal-semiconductor coupling and with the density of
states at the metal Fermi level. Thus, we can expect SEp to
be close to zero for metals of low electronegativity, for
which the metal-semiconductor coupling must be small, and of
low electron density; for these cases the barrier height
must be a }ittle smaller than 0.55 eV (this is the barrier

height for a free surface). On the other hand, SE; may

present important changes, up to 0.5 eV, for metais of high
electronegativity and high electron density. In general,
these comments seem to be in qualitative agreement with the
experimental results collected for the metal-semiconductor
junction (Rhoderick 1979).

As regards the change in the Fermi level, 6Ep, induced
by the barrier formation, it is worth commenting on the
experimental evidence given by Margaritondo et al. (1976). By
analyzing the cases of Al, Ga and In on Si, those authors
have shown that, with the barrier formation, the interface
Fermi level shifts towards the valence band in quantities of
0.20, 0.30 and 0.40 eV, for Al, Ga and In, respectively.

- Considering that these metals have a density of states at the
Fermi level between the two cases analyzed above (with the
Fermi level lying in the s- or the d-band), we conclude that
the observed shifts in the interface Fermi level are in
reasonable agreement with our previous calculation. Moreover, -
according to our previous diséussion, we expect the
differences between the three metals (Al, Ga and In) t» be
related to the different bondings between each metal and the
semiconductor. In this sense, note that the Pauling electro-
negativity takes the values 1.5, 1.6 and 1.7 for Al, Ga and
In, respectively, suggesting that, indeed, the increase of
elecfronegativity is related to a stronger coupling and to an
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increase of the barrier height.

On the other hand, let us comment that most silicides
seem to present an abrupt interface. Then, these junctions
can by analyzed in the terms presented in this Report. The
crucial parameters characterizing the interface are the
distance, d, between the last layers of the semiconductor
and the metal, and the strength of the metal-semiconductor
bond. Due to structural and bonding similarities (Ho et al.
1979), we can expect these junctions to have practically the
same charge neutrality point and the same value of S. This
suggests that these junctions must show a linear relationship
between the height barrier and the workfunction of the
silicide metal. This seems to be in reasonable agreement with
the experimental evidence (Froecuff 1980), although
complementary information on the silicide workfunction would
be necessary to reach a definite conclusion,

Let us finally make a commment on the barrier height
formation: for an abrupt interface, the barrier height is
determined by the density of states near the Fermi level in
the semiconductor gap. For a clean surface, this density is
high and is determined by the surface band; as far as the
metal-semiconductor coupling is switched on, this density of
states decreases, an effect induced by the broadening of the
surface states of the free semiconductor. This process
explains why the Fermi level for the junction almost coincides
with the Fermi level for the free surface, a result stressed
by other researchers (Tejedor et al.1%977, Louis and Flores
1981) .

In conclusion:

(a) The Fermi level at the junction -as measured from a
fixed point in the semiconductor- moves towards the valence
band for increasing values of the metal-semiconductor
coupling. ’ _ | oo

(b) The density of states at the Fermi level decreases o
for an increasing coupling between the metal and the
semiconductor.

{c) As far as the density of states in the main gap
decreases with the metal-semiconductor bond strength, we
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find a corresponding increase in the density of states of
the valence band near the top band edge.

(d) The effect of an increase in the metal density of
states at the Fermi level on the junction properties is similar

to an increase in the metal-semiconductor coupling.

I1.2.4. Results and discussion for the metal-interlayer-

semiconductor junction

Let us turn our attention to etched junctions with a
monolayer between the metal and the semiconductor. In our
calculation we have assumed to have one ad-atom on top of the
outermost Si-atom, and the same structure for the metal as
the one discussed above in §II.2.3 with one metal-atom on top
of the ad-atom. For the ad-atom we have assumed to have a
s-orbital per atom, a model appropriate for a H or Cs
monolayer, while for the metal we have used those parameters
given in §II.2.3 and adjusted to a Ag-case.

The Hamiltonian for the interface is defined by a
number of parameters giving the coupling between the ad-atom
and the orbitals of the last layers of the metal and the
semiconductor. For H we have followed Pandey (1976) and
taken the following parameters for the Si-H interaction:

i-H _ _
VI = 3057 ev
(11.29)
Si-H _ _
vspo = -2.76 eV ,
where Vss and Vspo give the interactions between the ad-atom

and the s and p orbitals of Si, respectively. For the Ag-H
coupling, we need the interactions between the ad-atom and
the s- (Vgg-ﬂ) or d-orbitals (Vgg_H); these parameters have
been obtained by averaging the Si-H interactions with the
Ag-Ag interactions, vgg-Ag and Vgg—Ag' given above (§II.2.3).
This yields:

g-H
Ve

g-H
Ved

-2.3 eV
(11.30)

-100 eV .

e ——— el
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On the other hand, EO the mean atomic level for the

'
isolated atom, has been ad?usted to give an appropriate
solution for the case of a H-monolayer adsorbed on a clean
111-8i surface (Appelbaum and Hamann 1975, Pandey 1976). In
Figures II.7 and II.8 we give the density of states in the
adsorbed monolayer and in the last semiconductor layer as

obtained for

Ep = -5.4 eV (I1.31)
by means of a selfconsistent calculation. This density of
states shows a good agreement with other calculations (Pandey
1976), and it corresponds to a solution for which there is a
small transfer of charge, around 0.01 e/atom, from the
monolayer to the semiconductor surface layer; this is in
agreement with the experimental evidence (Ibach and Rowe 1974).
Note that for the monolayer case, we get selfconsistency by
means of an equation similar to (II.13); in this equation, U
has been taken egual to 8 eV, following many other
chemisorption analysis for H (Baldo et al.1983, Newns 1969).

The values given in (II.29), (II.30) and (II.31), and
the parameters introduced in II1.2.3 for the metal and the
semiconductor, define our model Hamiltonian for the H-
interlayer.

At this point it is convenient to remark that Figures
II.7 and I1I.8, as well as all the calculations presented in
this paragraph for the metal-interlayer-semiconductor junction,
have been obtained by using the semiconductor parameters
given by Pandey and Phillips (1976) and collected in Table
I1.1. In spite of the comment made in §II1.2.2 for this case,
where we stressed the difficulties associated with the fact
that the Fermi level for the interface lies in the
semiconductor valence band, we have checked that all the main
results related to changes in the Fermi level as obtained
with the P-P parameters are in good agreement with the
results as calculated with the M-V parameters (a case giving
a better description of the surface states position).

As 1regards the Cs-interlayer, we have determined the
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parameters defining the interface in the following way:
firstly, we have obtained the effective ng—Cs interaction
by means of the procedure given by Harrison (1980). Then, we

have obtained the different Si-Cs and Ag-Cs interaction
parameters by averaging that effective interaction, VS:_CS,
with the Si-Si and Ag-Ag interaction parameters. This

procedure yields:

XN

Ag-Cs _ _
Vss = «1,5 ev
g-Cs - -
vgd 1.6 eV
. (I1.32)
v3i=Cs _ 1,25 ev
SS
i~Cs _ _
spo = ~0.92 eV .

On the other hand, Eég)

of the affinity and the ionization levels for the free atom:

has been taken equal to the average

B = -2.0ev . (IT.33)

Finally, fér Cs, the intraatomic interaction, U, has
been taken equal to 1.5 eV, close to the difference between
the affinity and the ionization levels.

In order to analyze the effect of Cl on the junction
properties, we have adapted the previous model, keeping only
a s—~atomic orbital, but introducing stronger interactions
with the metal and the semiconductor. To this end, we have
practically scaled the H-Si and H-Ag interactions with the
Cl-si and Cl-Ag ones, by means of the bond energies for H
and Cl with Si and Ag (Pauling 1972). This yields:

vel=Cl o .45 ev
Si~Cl

Vspo = =1.41 eV .

(1I.34)
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Moreover, following the criterium given above for Cs,
we have selected the following parameters:
(0) _ _
ECl = -8.3 eV
(II.35)

Uu=17ev ,

which completely determine our interface model Hamiltonian.

One more comment must be made before discussing cur
results: selfconsistency has to be reached by using egs.(II.1l0),
(rr.11), (rr.12) and (I1I1.13). However, in order to apply
eq.(II.13) we need the distances d and d' between the last
metal layer and the interface semiconductor layer or the
ad-atom interlayer, respectively. For H and Cl we can assume,
as discussed above, that the ad-atom is located on top of
the outermost Si-atom (Pandey 1976, Schluter and Cohen 1978),
and the distances d and d' can be approximately obtained by
adding the covclent atomic radii. However, for Cs a more
appropriate position would be for the ad-atom to sit above
the center of three Si-atoms. Then, the distance between the
interlayer and the last semiconductor layer, (d'-~d), would
be substantially reduced. This fact can have considerable
effect in the final selfconsistency: we shall discuss its
implications later on. (In spite of this comment, for the
sake of simplicity, we shall calculate the Cs-interlayer case
with a model Hamiltonian appropriate for an ad-atom adsorbed
_.on the top position; the effect of the adsorption site will
be only simulated by changing the distance (4'-d)).

In Figures II.9 and I1.10 we present the density of
states in the interlayer and the last semiconductor layer as
calculated for the Si-H-Ag junction. In Figures II.11l and
I1X.12 we give the same quantities for the Si-Cs-Ag junction,
by assuming no transfer of charge from or to the interlayer
(see below).

Our calculation shows the following general results:

(i) The parameter S', giving through eq. (II.15) 6D, is
practically zero in all the cases (H, Cs and Cl). Then, the
Fermi level for these junctions practically coincides with
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the charge ﬁeutrality level.

(ii) The charge neutrality level can be obtained in
two steps. In a first step, this level has been obtained by
assuming no transfer of charge from the ad-atom to the
semiconductor: this is practically the case for H. In a
second step, the charge neutrality level is modified by the
transfer of charge from (or to) the interlayer, due to the
low or high ad-atom electronegativity.

For H, with an electronegativity similar to Si and Ag,
there is practically no transfer of charge between the
interlayer and the semiconductor. Then, the charge neutrality
level is given by the first step. Our calculation shows that
this level is 0.13 * 0.05 eV below the Fermi level for the
free surface. It is worth remarking that this level almost
coincides with the one obtained for the clean Ag-Si junction.
We conclude that for H, the interface Fermi level is very
close to the one obtained for the clean Si-Ag junction.

For Cs, there is an important transfer of charge from
the ad~atom to the semiconductor. The first step mentioned
above gives a charge neutrality level located 0.07 : 0.05 eV
below the free surface Fermi level. On top of this, the
charge neutrality level shifts to lower energies due to the
transfer of charge from the ad-atom to the semiconductor.
Our calculation shows that this shift ¢E_ is related to the

F

transfer of charge, an by the equation:

Cs'’

GEF = 0.4 AnCs (II.36)

with 6Ep given in eV and An.g in units of electronic charge

per atom. Now, it is important to note that An is very

Cl
dependent on (d-d'), the distance between the ad-atom

interlayer and the last semiconductor layer. For a position on

top of the 8i atom, we have estimated an to be arcand 0.16

units of electronic charge. However, forg: site above the
mid-point of three Si-atoms, we have estimated that AnCs must
be around 0.5 units of electron charge. For the two cases,

the charge neutrality level shifts towards lower energies in

0.08 eV and 0.25 eV, respectively. Considering the second
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§0

case to be the most likely to happen, we obtain a Fermi

level for the Si-Cs-Ag located 0.32 * 0.05 eV below the Fermi
level for the free surface, and 0.17 + 0.C5 eV below the
Fermi level for the clean Si-Ag interface.

For Cl, we find an important transfer of charge to the
ad-atom. With the first step (no transfer of charge), the
charge neutrality level is located at 0.17 * 0.05 eV below
the Fermi level for the free surface. In the second step, we
find that the charge neutrality level shifts to higher

by the equation:

energies; 6EF is related to Ancl

SE, = 0.6 An ' (I1.37)

F Cl

with Ancl measured in units of electronic charge per atom.
With the on the top position for Cl, we have estimated that
Anc1 = 0.14, and GEF = 0.08 eV. Accordingly, we obtain a
Fermi level for the Si-Cl-Ag junction located around

0.09 £ 0.05 eV below the Fermi level for the free surface and

0.04 + 0.05 eV above the Fermi level for the Si-Ag junction.

+

Summarizing the last results: the Fermi level for the
Si-Cs-Ag, Si-H-Ag and Si-Cl-Ag junctions have been obtained
at energies: -0.17 * 0.05 eV, 0.02 * 0.05 eV and
0.04 + 0.05 eV, respectively, referred to the Fermi level for
the Si-Ag junction.

The main changes in the Fermi level (and the
corresponding changes in the barrier height) are induced by
ad-atoms of very low affinity. This is mainly due to the fact
that Cs has been supposed to sit on the mid of three Si-atoms.
In other words, had we assumed Cl to sit on the same
position, we had obtained a greater shift, around 0.2 eV, in
the Fermi level but towards higher energies. This conclusion .
seems to be in agreement with the results obtained by
Mottram et al.(1975) for an interlayer of O; in this case,

O sits in the .aid-position and induces a shift in the
interface Ferm: energy of 0.2 eV towards the conduction band.

(iii) Firally, we have analyzed the effect of the wmetal
density of states at the Fermi level on the previous results
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by changing the Fermi level position in Ag. For the case in
which the Fermi level was located at the d-band, we have
found no significative change in our previous conclusions.
Thus, the barrier height for the interlayer junctions seems
to be practically independent on most of the metal properties.
Note that this result is contrary to the one obtained for
the clean metal-semiconductor junctions, where a high
density of states at the metal Fermi level was found to
induce an important shift in the interface Fermi level (see
§I1.2.3). This suggests that the barrier height for etched
junctions is mainly determined by the semiconductor-ad-atom
interaction.

In conclusion, the crucial physical quantities
determining the barrier formation in the metal-interlayer-
semiconductor junctions seem to be the ad-atom electro-
négativity and the adsorption site for the ad-atom. In other
words, the barrier height is practicaily determined by the
coupling between the semiconductor and the ad-atom
interlayer.

II.3. NON~-ABRUPT METAL-SEMICONDUCTOR JUNCTIONS

IT.3.1. Introduction

The mechanism of Schottky-barrier formation has been
the subject of a variety of proposed interpretations
(Schottky 1942, Bardeen 1947, Heine 1965, Rhoderick 1978,
Garcfa-Moliner and Flores 1979). Very recently (Andrews and
Phillips 1975, Brillson 1978, Ottaviani et al.1980), new
experimental information has been obtained, which point'to
the effect of the metal-semiconductor reactivity on the
barrier height of the junction. Another interesting feature
which occurs at some of these interfaces is the atomic
rearrangement that takes place at the metal-semiconductor
junction (Cheng et al.1980, Brillson et al,.1981). In
particular, Brillson et al (1981) have shown that, in III-V
semiconductors, the abruptness of the junction interface is




82

a function of the stregth of the metal-(III-V) semiconductor
bonding. Interface widths have been measured, and

correlated with the metal-semiconductor heat of interface
reacticn AHp (defined as HF(semiCOnductor)-HF(metal-anion
complex of lowest energy), Hy being the heat of formation

per metal atom). Both magnitudes appear to correlate linearly,
with the interface width extending from 20 & down to
practically abrupt surfaces.

Here, we advance a simple theory to explain existing
data on the widths of these interfaces, and to make
predictions about some materials not hitherto examined
experimentally. We assume that no structural effect at the
interface may prevent both crystals to interdiffuse, and
reach their thermudynamical equilibrium (Proc.Conf.on
Surfaces 1982).

I1.3.2. Reference system: Ga on Ga-As, etc.

To apply chemical solution theory, it will be
instructive to discuss first a reference system.

This we choose, as in the Ga-GaAs interface, such that
the metal ion ié identical to the semiconductor cation. For
this reference system, it is evident that the heat of
interface reaction AHp (which is a measure of the energy
required to substitute the semiconductor cation by the metal)
ﬁust be identically zero.

This is a binary system which we shall analyze using
methods related to the pioneering studies of Cahn and
Hilliard (1958). Figure II.13 shows schematically the density
profiles of Ga and of As perpendicular to the planar inter-
face of Ga-GaAs, N, and N, being the respective numbers of
anions and cations in volume V. We assume no chaage in N
across the interface (in Ga metal, N = 5.1x10%%2 om™>, while

22 -3 . , , , ———
in GaAs, N = 4.3x10 cm ~: so the approximation is fairly

reasonable in this material). '
The formulation used below to analyze this reference
system can be viewed as based on that of Fleming et al.

(1976) . This theory treats inhomogeneities by local theory,




/A

and As at

FIGURE II.13.- Density profiles of Ga
the planar interface.
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corrected by low order density gradients. The relation between
such a theory and the Cahn-Hilliard phenomenological approach
employed by Bathia and March (1978) has been clarified by
Bathia, March and Sutton (1978). With the simplifications
discussed here, the free energy density required, denoted by
w(f), as a function of the densities Ny, Ny and their
derivatives can be written as the sum of two pﬁ;ts, L2 and

Vor ¥y being a local part and Yo proportional to the

gradients of N1 and NZ' The local part ¥; can be expressed

in the form

2

2

L anensac]|® + 28 ne)? (II.37)
v

kN
where N = N +N2, kT is the appropriate isothermal

1
compressibility, G is the Gibbs free energy, while

AN = AN1 + AN2
‘and

Ac = N-l[(l-C)ANl‘CANZ] .

Evidently the second term in eq.(II.37) comes from the
concentration fluctuations, while the first term represents
contributions from fluctuations in the total density, but
combined with the effect of the size factor §, which
multiplies again the change in concentration Ac. Evidently,
in the first term in eq.(II.37), the presence of size
differences leads directly to an interference term between
AN and Ac. For the reference system we assume AN = Q0 while
we shall also take the size difference § to be unimportant,
and put that to zero as well. The only contribution
remaining then in the local part of the free energy is
therefore coming from the concentration~concentration
function SCC(O) defined by

2 Nk_T
1 %6 2 B 2
= —= (Ac)® = (Ac) .
Voac? Sec(0)

The second part of the free energy, ¥,, can be written
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=1 _ 2
=3 {All(Nl'NZ) + Ay, (NN 2A12‘“1*‘2’} (N))

(N = N.+N, = constant), or equivalently as

> 2
where B is essentially a homogeneous quantity, evaluated at
the local densities N1 and N,.

II.3.2.1. Regulan solution model of concentration
§luctuations

In a solution, the most elementary model for the Gibbs
free energy, G, is to construct it as a concentration
weighted average of the Gibbs energies, G1 and Y for the
two components,. plus the usual expression for the entropy of
mixing. This leads immediately to Scc(O) defined above in
terms of aZG/azc as c(l~-c). But this elementary treatment is
appropriate to an ideal solution, i.e. in the absence of
interactions between the two components. Once one introduces
an energy to measure these interactions, one is led to the
so-called regular solution model (see, for example, Bathia,
Hargrove and March 1973), namely

c(l-c)
s (0) = )
cc 1+ %ET c(1~c)

B

Here 2W is the total decrease in the energy of the system
when two atoms, A and B, of each solution are interchanged.
For the case under discussion, we identify 2W with the energy
of formation of the compound, say GaAs, minus the energy of
each one of the atoms, say Ga and As, in their own solution.
We see that SCC(O) decreases with increasing W, the heat of
reaction for the system. We show data for 2W, obtained from

tabulations which can be found in Kittel (1971), in Tabie II.3:

o S ————— -

TABLE II.3.~ Interchange energy 2W in kcal/mol.

AlpP AlAs InSb GaSb InP GaP InAs GaAs

39 27 8 8 23 20 17 17
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and it is interesting to note that of the systems examined
by Brillson et al.(1981), InP, IuaAs and GaAs have rather
similar values of 2W, and we expect the #neference interface
thicknesses to be similar (see below).

As regards B(NlNz) above, we assume that the most
important contribution comes from the metallic electrons
which have not reacted to form III-V-like bonding. This
density is given by

NA = 3[N(cation) - N(anion)] = 3[N-2N1] ‘
where the factor of 3 comes because we are dealing with
trivalent metals, and now, following the gradient expansion
of Kirznits (1957), we write the second contribution as

1 Ty 2
Tar, ()T

Following Bathia and March (1978), we obtain the
interfacial free energy o by integrating the free energy
density wl+¢2 through the interface, remembering that this
interface is of thickness 1, in the form

Nk_T 1(¥n,)2
g v E-Ew)l(ﬂc)z + -—.7-2-’:’—15——— "
cc A

2
Nk, T 1(¥,,
B 2W . 2 A
* eti-or [“ kT <1 C']l“‘c) YN,

Now, we take the mean values Ac ~ 1/2, ¢ ~ 3/4,
N, ~ 38/2 and |$NA| n~ 3N/1, and by minimization we find
the interface thickness from '

2 3 1
lmgl-'r[ui‘,w |
"B 4 EBT
We now note that 2w/kBT in Table I1I.3 varies between 60 and

10, in such a way that to a good apéroximation

2

1 m,%w (au)2 . {I1.38)




If we take 2W = 1/2 eV, then 1 ~ 7.5 a.u. ~ 4 R. 1t is
interesting that this value is already a factor of about 10
larger than for surface thickness of, say, the liquid-metal-
vapour interface ac obtained from a similar argument (Bathia
and March 1978).

It is important to emphasize that in the theory
presented above, the interface thickness, 1, depends only on
the heat of reaction (in this reference system). One merit
of this is that possible ambiguities associated, for example,
with the choice of the value of the isothermal compressibility
in eq.(fI.37) do not play any part in the final expression
for the interface thickness. However, at first sight, the
dependence of 1 solely on the heat of reaction predicted by
eq. (II.38) (l2 A 1/W) does not seem to be in agreement with
experiment. But since experimental evidence has been
collected for the following III-V semiconductors, GaAs, InAs,
InP and GaSb, we have already remarked that from Table II.3
the first three have very similar values of W and hence
would have much the same interface thickness on the present
theory. However for GaSb, W is smaller and hence the
interface thickness 1 is expected to he larger, which seems
to be reflected in the only one experimental value for this
material (Brillson et al.1981), while for AlP and AlAs we can
expect the interface thickness, 1, to be smaller.

II.3.3. General metal-semiconductor interface (eg. In-GaAs)

Let us now turn to the three-component system, but
consider only cases for which the metal has a similar
reactivity to the cation, say In on GaAs. The corresponding
density profiles are shown schematically in Figure II.14.
The profiles for Ga and In, when combined, must give the Ga
profile for Ga-GaAs. We take into account the effect of the
metal on the As profile by assuming that 2W, the heat of
reaction for the two-component case, has changed by a
quantity which is equal to 1/2 of the heat of interface
reaction, as given by Brillson et al.(1981). This heat of
interface reaction is a measure of the different reactivity




In

T

FIGURE II.14.- Density profiles of Ga, As and
In at the planar interface.




89

for In: the'factor of 1/2 appears since As sees Ga and In
at the interface.
With this model, we can calculate
dl/d(sH) [d(aH_/2)=-d(2W)] and a simple differentiation gives
the desired result

1_d  _1

For 2W = 0.5 eV, we find that 1/1 dl/d(aH)) = 1(eV)™ T, in

excellent agreement with the slope of the straight line
plot given by Brillson et al. (1981).

I1.3.4. Conclusion

The main conclusion of this section II.3 is that the

interface thickness is not only a function of AH but of

’
2W, the heat of reaction for the semiconductor. gﬁe
experimental data of Brillson et al.(1981) have been mainly
obtained for those semiconductors having a similar heat of
reaction, thus giving a unique dependence of 1 on AHR.
However, interface lengths must be greater for decreasing
heats of reactivity 2W. (For the reference system 1 ~ 1/W<).
Table II.3 indicates the interest in making measurements on
AlP (larger 2W) and on InSb and GaSb (smaller 2W) to test

the dependence of the interface lengths on 2W.




oAPTER IIl. concLus 10NS

In this Project we have analyzed some electronic
properties of GaAs-AlAs heterojunctions and of metal-

semiconductor junctions. -

III.1. GaAs-AlAs HETEROJINCTIONS

By means of a selfconsistent localized scheme, the
structural and electronic properties of several GaAs-AlAs
SL's grown in the (001) and (111) directions have been
obtained. Our results show that small ionic relaxations
appear at the (100)-interfaces, while no appreciable
relaxation is found at (11l1)-interfaces. For the (100)-
interfaces, the ionic relaxation affects to the first Ga
and Al planes on each side of the As ions, by increasing the
anion-cation distances in a 2.5 %. This relaxation is a
purely interface effect and we conclude that the displaccments
obtained in finite SL's are valid for thicker SL's and
heterojunctions.

Our calculation also shows a small transfer of charge
from AlAs to GaAs, so that a potential barrier between both
semiconductors appears. By using this barrier we have
obtained the shift of the electronic structure of GaAs with
respect to AlAs for thicker Sl.'s and semiinfinite hetero-
junctions. We have obtained the following difference; AEV,
between the top of the AlAs and GaAs valence bands:

AEV(OOI) = -,282 eV,

AEV(lll) 0.288 ev ,

in remarkable agreement with the experimental evidence.
The electronic spectrum of different SL's have also

been obtained, and we have found that in the (111)-SL's,

the upper valence state is spatially localized on the GaAs
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region. At the same time, the conduction band for the (100)-
SL's has been calculated as well. Our calculation shows a
very high effective mass, m* = 10.6 m, for the second
conduction band. This result may have important implications
for Raman scattering.

III.2. METAL-SEMICONDUCTOR JUNCTIONS

III.2.1. Clean metal-semiconductor junctions

¢

Abrupt (111)-Si-Ag junctions have been analyzed by a
selfconsistent tight-binding calculation. For this junction
we have found that the interface Fermi level shifts with
respect to the Fermi level of a clean semiconductor surface,
moving towards the valence band. The extent of this shift
depends essentially on the strength of the metal-semiconductor
coupling.

By changing the parameters defining the junction, we
have analyzed the barrier formation of a general junction
and conclude that:

(i) The Fermi level at the interface -as measured from
a fixed point in the semiconductor- moves towards the
valence band as a function of the strength of the metal-
semiconductor coupling.

(i1) The density of states at the Fermi level decreases
for an increasing coupling of the metal and the semiconductor.

(11i) The effect of an increase in the metal density
of states at the Fermi level on the junction properties is
similar to an increase in the metal-semiconductor coupling.

(iv) The barrier height is essentially
determined by the coupling between the semiconductor and the °
Last metal layer.

I1I.2.2. Etched metal-semiconductor junctions

We have performed a realistic calculation of a Si-H-Ag
junction by means of a selfconsistent tight-binding
calculation. By an appropriate change of the interface




parameters, we have explored the effect of having a Cs or a
Cl monolayer at the interface.

Our calculation shows:

(i) The Fermi level for the Si-Cs-Ag, Si-H-Ag and
§1-Cl-Ag junctions are at =-0.17 z 0.005 ev, 0.02 t 0.05 eV
and 0.04 + 0.05 eV, respectively, referred to the Fermi
level for the Si-Ag junction.

(11) The main changes in the Fermi leve. ‘and in the
barrier height are induced by ad-atoms of low and high
electronegativity when they are supposed to sit on the mid
of three Si atoms. For atoms of low (high) electronegativity,
the Fermi level shifts towards the valence (conduction)
band.

(i1i) The crucial physical quantities determining the
barrier formation in the metal-interlayer-semiconductor
junctions are the ad-atom electronegativity and the
adsorption site for the ad-atom. The barrier height is
practically determined by the coupling between the semi-~
conductor and the ad-atom interlayer.

III.2.3. Non-abrupt metal-semiconductor junctions

Non-abrupt (III-V) semiconductor-metal junctions have
‘been analyzed by means of chemical solution theory. Our main
conclusion for these junctions is that the interface
thickness is not only a function of the metal-semiconductor
heat of reaction , as suggested by Brillson et al.(1981),

but of the heat of reaction for the semiconductozntoo.Ihterfaoe.

lengths must increase for decreasing heats of reactivity.
Thus, it can be expectéd smaller interface thicknesses for
AlP than for InSb and GasSb. .

92




93

REFERENCES

Andreoni W and Car R 1980 Phys.Rev.B, 21, 3334
Andrews J M and Phi;lips J C 1975 Phys.Rev.Lett., 35, 56

Appelbaum J A and Hamann D R 1975 Phys.Rev.lett., 34, 806

Baldo M, Flores F, Martin-Rodero A, Piccittu G and Pucci R ;
1983 to be published

Bardeen J 1947 Phys.Rev., 71, 717
Barker Jr A S, Merz J L and Gossard A C 1978 Phys.Rev.B, 17,

3181 :
Bathia A B, Hargrove W A and March N H 1973 J.Phys.C, 6, 621
Bathia A B and March N H 1978 J.Chem.Phys., 68, 4651
Bathia A B, March N H and Sutton J 1978 J.Chem.Phys. 69, 2258
Brillson L J 1978 Phys.Rev.Lett., 40, 260
Brillson L J, Brucker C F, Stoffel N G, Katuani A D and
Margaritondo G 1981 Phys.Rev.Lett., 46, 838
Caruthers E and Lin Chung P J 1978 Phys.Rev.B, 17, 2705
Cahn J W and Hilliard J E 1958 J.Chem.Phys., 28, 258
Chadi D J and Cohen M L 1974 Phys.Rev.B, 10, 4988
1975 Phys.Stat.Sol.(b), 68, 405
Cheng N W, Culberston R J, Feldman L C, Silverman P J, West
K W and Mayer J W 1980 PhyS.Rev.Lett., 45, 129 i
Colvard C, Merlin R, Klein M V and Gossard A C 1980 Phys.Rev. M
Lett., 45, 298
Desjonqueres M C and Cyrot-Lackmann I 1975 J.Phys.F, 5, 1368 ?
Dingle R, Gossard A C and Wiegmann W 1975 Phys.Rev.Lett., 34, :
1327
- Dingle R, Wiegmann W and Henry C H 1974 Phys.Rev.Lett., 33,
827 '
Djafari-Rouhani B, Dobrzynski L, Flores F, Lannoo M and 3
Tejedor C 1979 Surface Sci., 80, 134 ’
Ducastelle F and Cyrot-Lackmann I 1970 J.Phys.Chem.Solids, 31,
1295 '
Duke C B and Ford W K 1981 Surface Sci., 111, L685
Esaki L and Chang L L 1974 Phys.Rev.Lett., 33, 495
Falicov L and Yndurain F 1975 J.Phys.C, 8, 147
Fleming P D, Yang A J M and Gibbs J H 1976 J.Chem.Phys., 65, 7
Froeouff J L 1980 Solid Stat.Commun., 33, 1059
Froeouff J L and Woodall J M 1981 Appl.Phys.Lett., 39, 727
Garcfa-Moliner F and Flores F 1979 Introduction to the theonry
of sotid surfaces (Cambridge Univ.Press)

3L A R K A e T YA 0 T, YR

i
{
1
;




Gongalves da Silva C E T and Keiller B 1981 Solid Stat.

L ’ Commun., 40, 215

Gormik E, Schwarz R, Tsui D C, Gossard A C and Wiegmann W 1981
Solid stat.Commun., 38, 541

Guinea F, Tejedor C, Flores F and Louis E, to be
published

Harrison W A 1966 Pseudopotentials in the theory of metals
(Benjamin) :

Harrison W A 1980 Efectronic structune and the propenties of é
s0Lids (Freeman) ' ;

Heine V 1965 Phys.Rev., éggp, 1689

Hess K and Holonyak Jr H 1981 Comments Solid Stat.Phys., 10, 67

Ho PS, Tan T Y, Lewis J E and Rubloff G W 1979 J.Vac.Sci. p
Technol., 17, 924 :

Holonyak Jr H, Laidig W D, Camras M D, Morkog¢ H, Drummond T J %

A e g

' and Hess K 1981 Solid Stat.Commun., 40, 71 ;
Holonyak Jr H, Laidig W D, Vojak B A, Hess K, Coleman J J, '
] Dapkus P D and Bardeen J 1980 Phys.Rev.Lett., 45, 1703

Ibach H and Rowe J E 1974 Surface Sci., 43, 481 H

Ihm J, Lam P K and Cohen M L 1979 Phys.Rev.B, 20, 4120 j

Inkson J C 1973 J.Phys.C, 6, 1350 |

Kittel C 1971 Introduction to solid state physics (Wiley) |

Kirschnitz D A 1957 Sov.Phys.JETP, 5, 64 b

Kleinman L 1975 Phys.Rev.B, 11, 3900 f

Kohn W 1973 Phys.Rev.B, 7, 4383 !

Kunc K and Martin R M 1981 Phys.Rev.B, 24, 3445' '

Lannoo M and Allan G 1982 Surface Sci., 115, L137

Lee D H and Joanopoulos J D 1981 Phys.Rev.B, 23, 4988

Lohez D, Lannoo M, Masri P, Soonckindt L and Lassabatere L
1980 Surface Sci., 99, 132

Louie S G, Chelikowsky J R and Cohen M L 1977 Phys.Rev.B, 17,

1528

louis E, Flores F, Guinea F and Tejedor C 1982 Solid Stat, - - :

| » Commun., 44, 1633 §
Louis E and Flores F 1981 J.Physique, 42, 1313 3

' Louis E and Yndurain F 1977 Phys.Rev.B, 16, 1542 :

Manuel P, Sai-Halasz G A, Chang L L, Chang C A and Esaki L )
1976 Phys.Rev.Lett., 37, 1701 “

4‘ | o

S
MR SFIN, 1P S eman ey - > e PN




Margaritondo‘c, Rowe J E and Christman S B 1975 Phys.Rev.B,

[ ] 14, 5396

McKinley A, Williams R H and Parke A W 1979 J.Phys.C, 12, 2447

Menéndez C and Vergés J A 1981 Surface Sci., 112, 359

Merlin R, Colvard C, Klein M V, Morkoc H, Cho A Y and Gossard
A C 1980 Appl.Phys.lett., 36, 43

Montgomery V, McKinley A and Williams R H 197?’§urface Sci.,

89, 635 .
Mottran J D, Northrap D C, Reed C M and Thanailakis A 1979 ‘

% J.Phys.D, 12, 773

Newns D M 1969 Phys.Rev., 178, 1123

Northrup J E, Ihm J and Cohen M L 1982 Phys.Rev.lett., 47, 1910

Osbourn G C and Smith D J 1979 Phys.Rev.B, 19, 2124

Ottaviani G, Tu K N and Mayer J W 1980 Phys.Rev.lett., 44, 284

Pandey K C 1976 Phys.Rev.B, 14, 1557

Pandey K C 1982 Phys.Rev.lett., 49, 223

Pandey K C and Phillips J C 1976 Phys.Rev.B, 13, 750

¢ Pauling L 1972 The nature of the chemical bond (Cornell Univ.

Press, 3rd ed.)

Pickett W E, Lou;e S G and Cohen M L 1978 Phys.Rev.B, 17, 815

Pinczuk A, Shah J, Gossard A C and Wiegmann W 198la Phys.Rev.
Lett., 46, 1341

Pinczuk A, Worlock J M, Stormer H L, Gossard A C and Wiegmann
W 1981b J.Vac.Sci.Technol., 19, 561

Proceedings of the Conference on Surfaces and Interfaces, f
Trieste 1982 1

Rhoderick E H 1978 Metal-semiconducton contacts (Oxford Univ.
Press)

Sai-Halasz G A, Pinczuk A, Yu P Y and Esaki L 1978 Solid Stat.
Commun., 25, 381

S8&nchez-Dehesa J 1982° Ph.D.Thesis, Autonomous University of

B T T T R R A

Py

PP AR ) Sy

I s, PRy ohf ooy o8

Madrid
) 8&nchez-Dehesa J, Guinea F and Tejedor C 1981a J.Phys.C, 14, {
p 3355 . ?
S&nchez-Dehesa J, Vergés J A and Tejedor C 1981b Phys.Rev.B, %
' 24, 1006 : ?

S&nchez-Dehesa J, Vergés J A and Tejedor C 1981c Solid Stat.
Commun., 38, 871

Smm e e rmmn




L e T T I L e W ittt
S

96

Schliiter M and Cohen M L 1978 Phys.Rev.B, 17, 716 _

Schottky W 1942 Z.Phys., 118, 539 ;

Schulman J N and Chang Y C 1981 Phys.Rev.B, 24, 4445

Schulman J N and McGill T C 1979 Phys.Rev.B, 19, 6341

1981 Phys.Rev.B, 23, 4149

del Sole R and Chadi D J 1981 Phys.Rev.B, 24, 7430

Spicer W E, Lindau I, Skeath P R and Su C Y 1980 J.Vac.Sci.
Technol., 17, 1019

Stukel D J and Euwema R N 1969 Phys.Rev., 188, 1173

Tejedor C, Flores F and Louis E 1977 J.Phys.C, 10, 2163

Tejedor C and Vergés J A 1979 Phys.Rev.B, 24, 3445

Vergés J A 1978 Ph.D.Thesis, Autonomous University of Madrid

vergés J A and Tejedor C 1979a J.Phys.C, 12, 499

1979b Phys.Rev.B, 20, 4251

Walter J R and Cohen M L 1969 Phys.Rev., 183, 763

Weast R C 1980 Handbook of chemistry and physics (CRC, 61st ed.)
pp-E103-106 '

Weisbuch C, Dingle R, Gossard A C and Wiegmann W 198la Solid
Stat.Commun., 2, 709

Weisbuch C, Miller R C, Dingle R, Gossard A C and Wiegmann W
1981b Solid Stat.Commun., 37, 219

Williams R H, Montgomery V, Varma R .R arid McKinley A 1977
J.Phys.D, 10, L253 >

Williams R H, Montgomery V and Varma R R 1978 J.Phys.C, 11, 8
1989

Williams R H 1981 J.Vac.Sci.Technol., 18, 929

van der Ziel J P and Gossard A C 1978 Phys.Rev.B, 17, 765

AP PR > AT AL A, I TR K,

4







